[leetcode]unique-paths 动态规划 C++

题目:

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?

Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

题目分析:
用动态规划的思想解这道题,path[m][n]是一个二位数组,path[i][j]表示的是从[i][j]这个位置到Finish位置能够走的路的条数,因此,从Start到finish,用pth[0][0]表示。
首先,对path数组最底部一行以及最右边一列的值是可以知道都,都为1.依次按行从底部计算到顶部,求得path[0][0]的值即可。注意:动态规划状态转移方程:
path[i][j] = path[i + 1][j] + path[i][j + 1] ;


代码:

class Solution {
public:
  
    int uniquePaths(int m, int n) {
     if((m<=0)||(n<=0))return 0;
     if((m==1)&&(n==1)) return 1;
    int **path = new int*[m];
	int i, j;
	for (j = 0; j < m; j++)
	{
		path[j] = new int[n];
	}
	for (j = 0; j < n; j++)
		path[m - 1][j] = 1;
	for (i = 0; i < m; i++)
		path[i][n - 1] = 1;
	path[m-1][n-1] = 0;
	for (i = m - 2; i >= 0; i--)
	for (j = n - 2; j >= 0; j--)
	{
		path[i][j] = path[i + 1][j] + path[i][j + 1] ;
	}
	return path[0][0];
    }
    
};
个人总结:

注意边界的处理;还有就是转移状态方程是相加,不是求max。

你可能感兴趣的:(c++,leetcode)