【r<-包】ComplexHeatmap(3):创建热图列表

Author: Zuguang Gu ( [email protected] )
翻译:诗翔
Date: 2018-10-30


热图列表可以提高多种数据资源关系的可视化。在这个手册中,我们将讨论创建热图列表的配置。你可以在Examples 文档和 文章附加文档 中找到真实案例。

热图串联

你可以在图形中从左到右排列多个热图。实际上,一个单一的热图是热图列表长度为1时的特殊情况。

Heatmap()实际上是单一热图的类构造函数。如果需要组合超过一个热图,用户可以通过+操作符添加热图。

library(ComplexHeatmap)

mat1 = matrix(rnorm(80, 2), 8, 10)
mat1 = rbind(mat1, matrix(rnorm(40, -2), 4, 10))
rownames(mat1) = paste0("R", 1:12)
colnames(mat1) = paste0("C", 1:10)

mat2 = matrix(rnorm(60, 2), 6, 10)
mat2 = rbind(mat2, matrix(rnorm(60, -2), 6, 10))
rownames(mat2) = paste0("R", 1:12)
colnames(mat2) = paste0("C", 1:10)

ht1 = Heatmap(mat1, name = "ht1")
ht2 = Heatmap(mat2, name = "ht2")
class(ht1)
## [1] "Heatmap"
## attr(,"package")
## [1] "ComplexHeatmap"
class(ht2)
## [1] "Heatmap"
## attr(,"package")
## [1] "ComplexHeatmap"
ht1 + ht2
【r<-包】ComplexHeatmap(3):创建热图列表_第1张图片

在默认情况下,第二个热图的行树状图会被移除,行的顺序会和第一个热图保持一致。

两个热图相加的返回值是一个HeatmapList对象。直接允许ht_list对象会默认调用draw()方法。通过显式地调用draw()方法,你可以进行更多的控制,例如图例和标题。

ht_list = ht1 + ht2
class(ht_list)
## [1] "HeatmapList"
## attr(,"package")
## [1] "ComplexHeatmap"

你可以添加任意数目到热图到一个热图列表。你也可以将一个热图列表添加到一个热图列表。

ht1 + ht1 + ht1
ht1 + ht_list
ht_list + ht1
ht_list + ht_list

NULL也可以被添加到一个热图列表。如果用户想要通过for循环构造一个热图列表,这会非常地方便。

ht_list = NULL
for(s in sth) {
    ht_list = ht_list + Heatmap(...)
}

标题

热图列表的标题独立于热图的标题。

ht1 = Heatmap(mat1, name = "ht1", row_title = "Heatmap 1", column_title = "Heatmap 1")
ht2 = Heatmap(mat2, name = "ht2", row_title = "Heatmap 2", column_title = "Heatmap 2")
ht_list = ht1 + ht2

draw(ht_list, row_title = "Two heatmaps, row title", row_title_gp = gpar(col = "red"),
    column_title = "Two heatmaps, column title", column_title_side = "bottom")
【r<-包】ComplexHeatmap(3):创建热图列表_第2张图片

热图间隔

热图间隔可以使用一个unit对象传入gap参数。

draw(ht_list, gap = unit(1, "cm"))
【r<-包】ComplexHeatmap(3):创建热图列表_第3张图片
draw(ht_list + ht_list, gap = unit(c(3, 6, 9, 0), "mm"))
【r<-包】ComplexHeatmap(3):创建热图列表_第4张图片

热图大小

热图的宽度可以设置为固定长度。

ht1 = Heatmap(mat1, name = "ht1", column_title = "Heatmap 1")
ht2 = Heatmap(mat2, name = "ht2", column_title = "Heatmap 2", width = unit(5, "cm"))
ht1 + ht2
【r<-包】ComplexHeatmap(3):创建热图列表_第5张图片

或者宽度可以设置为相对值。注意在这种情况下,每个热图都需要进行设置。

ht1 = Heatmap(mat1, name = "ht1", column_title = "Heatmap 1", width = 2)
ht2 = Heatmap(mat2, name = "ht2", column_title = "Heatmap 2", width = 1)
ht1 + ht2
【r<-包】ComplexHeatmap(3):创建热图列表_第6张图片

自动调整

如果绘制超过一个热图,会进行一些自动的调整。默认第一个热图是主热图。其他热图会根据主热图的设定进行更改。调整包括:

  • 行聚类被移除
  • 行标题被移除
  • 如果主热图按行切分,余下的热图也会进行该操作

主热图可以通过main_heatmap参数指定。值可以是一个数值索引或者热图的名字。

ht1 = Heatmap(mat1, name = "ht1", column_title = "Heatmap 1", km = 2)
ht2 = Heatmap(mat2, name = "ht2", column_title = "Heatmap 2")
ht1 + ht2
【r<-包】ComplexHeatmap(3):创建热图列表_第7张图片
# note we changed the order of `ht1` and `ht2`
draw(ht2 + ht1)

【r<-包】ComplexHeatmap(3):创建热图列表_第8张图片
# here although `ht1` is the second heatmap, we specify `ht1` to be
# the main heatmap by explicitely setting `main_heatmap` argument
draw(ht2 + ht1, main_heatmap = "ht1")
【r<-包】ComplexHeatmap(3):创建热图列表_第9张图片

如果主热图没有行聚类,其他热图也不会有。

ht1 = Heatmap(mat1, name = "ht1", column_title = "Heatmap 1", cluster_rows = FALSE)
ht2 = Heatmap(mat2, name = "ht2", column_title = "Heatmap 2")
ht1 + ht2
【r<-包】ComplexHeatmap(3):创建热图列表_第10张图片

同时更改图形参数

ht_global_opt()可以设置维度名和标题名图形参数为全局设定。

ht_global_opt(heatmap_row_names_gp = gpar(fontface = "italic"), 
              heatmap_column_names_gp = gpar(fontsize = 14))
ht1 = Heatmap(mat1, name = "ht1", column_title = "Heatmap 1")
ht2 = Heatmap(mat2, name = "ht2", column_title = "Heatmap 2")
ht1 + ht2
【r<-包】ComplexHeatmap(3):创建热图列表_第11张图片
ht_global_opt(RESET = TRUE)

下面是支持的所有选项,你也可以控制图例设置。

names(ht_global_opt())
##  [1] "heatmap_row_names_gp"             "heatmap_column_names_gp"         
##  [3] "heatmap_row_title_gp"             "heatmap_column_title_gp"         
##  [5] "heatmap_legend_title_gp"          "heatmap_legend_title_position"   
##  [7] "heatmap_legend_labels_gp"         "heatmap_legend_grid_height"      
##  [9] "heatmap_legend_grid_width"        "heatmap_legend_grid_border"      
## [11] "annotation_legend_title_gp"       "annotation_legend_title_position"
## [13] "annotation_legend_labels_gp"      "annotation_legend_grid_height"   
## [15] "annotation_legend_grid_width"     "annotation_legend_grid_border"   
## [17] "fast_hclust"

获取顺序和树状图

row_order,column_order, row_dendcolumn_dend可以用来从热图中获取对应的信息。下面例子展示了其用法非常直观。

ht_list = ht1 + ht2
row_order(ht_list)
## [[1]]
##  [1]  8  3  4  1  5  7  2  6  9 11 10 12
column_order(ht_list)
## $ht1
##  [1]  5  1  3  2  7  9  6 10  8  4
## 
## $ht2
##  [1]  9  4  6  7  8  1  5 10  3  2
row_dend(ht_list)
## [[1]]
## 'dendrogram' with 2 branches and 12 members total, at height 16.14288
column_dend(ht_list)
## $ht1
## 'dendrogram' with 2 branches and 10 members total, at height 8.069474 
## 
## $ht2
## 'dendrogram' with 2 branches and 10 members total, at height 6.883

如果ht_list还没有绘制,如果矩阵很大使用这4个函数会有点慢。但是如果ht_list已经绘制了,这意味着已经对矩阵进行了聚类,那这些函数就会很快。

ht_list = draw(ht1 + ht2)
row_order(ht_list)
column_order(ht_list)
row_dend(ht_list)
column_dend(ht_list)

带行注释的热图列表

请查看 Heatmap Annotation 获取信息。

修改主热图的行顺序/聚类

这可以直接调用draw()方法实现。

split = rep(c("a", "b"), each = 6)
ht_list = Heatmap(mat1, name = "mat1", cluster_rows = FALSE, column_title = "mat1") + 
          Heatmap(mat2, name = "mat2", cluster_rows = FALSE, column_title = "mat2")
draw(ht_list, main_heatmap = "mat1", split = split)
【r<-包】ComplexHeatmap(3):创建热图列表_第12张图片
draw(ht_list, main_heatmap = "mat2", km = 2, cluster_rows = TRUE)
【r<-包】ComplexHeatmap(3):创建热图列表_第13张图片
draw(ht_list, cluster_rows = TRUE, main_heatmap = "mat1", show_row_dend =TRUE)
【r<-包】ComplexHeatmap(3):创建热图列表_第14张图片
draw(ht_list, cluster_rows = TRUE, main_heatmap = "mat2", show_row_dend =TRUE)
【r<-包】ComplexHeatmap(3):创建热图列表_第15张图片

会话信息

sessionInfo()
## R version 3.5.1 Patched (2018-07-12 r74967)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.5 LTS
## 
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.8-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.8-bioc/R/lib/libRlapack.so
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               LC_TIME=en_US.UTF-8       
##  [4] LC_COLLATE=C               LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
## [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
##  [1] stats4    parallel  grid      stats     graphics  grDevices utils     datasets  methods  
## [10] base     
## 
## other attached packages:
##  [1] dendextend_1.9.0      dendsort_0.3.3        cluster_2.0.7-1       IRanges_2.16.0       
##  [5] S4Vectors_0.20.0      BiocGenerics_0.28.0   HilbertCurve_1.12.0   circlize_0.4.4       
##  [9] ComplexHeatmap_1.20.0 knitr_1.20            markdown_0.8         
## 
## loaded via a namespace (and not attached):
##  [1] mclust_5.4.1           Rcpp_0.12.19           mvtnorm_1.0-8          lattice_0.20-35       
##  [5] png_0.1-7              class_7.3-14           assertthat_0.2.0       mime_0.6              
##  [9] R6_2.3.0               GenomeInfoDb_1.18.0    plyr_1.8.4             evaluate_0.12         
## [13] ggplot2_3.1.0          highr_0.7              pillar_1.3.0           GlobalOptions_0.1.0   
## [17] zlibbioc_1.28.0        rlang_0.3.0.1          lazyeval_0.2.1         diptest_0.75-7        
## [21] kernlab_0.9-27         whisker_0.3-2          GetoptLong_0.1.7       stringr_1.3.1         
## [25] RCurl_1.95-4.11        munsell_0.5.0          compiler_3.5.1         pkgconfig_2.0.2       
## [29] shape_1.4.4            nnet_7.3-12            tidyselect_0.2.5       gridExtra_2.3         
## [33] tibble_1.4.2           GenomeInfoDbData_1.2.0 viridisLite_0.3.0      crayon_1.3.4          
## [37] dplyr_0.7.7            MASS_7.3-51            bitops_1.0-6           gtable_0.2.0          
## [41] magrittr_1.5           scales_1.0.0           stringi_1.2.4          XVector_0.22.0        
## [45] viridis_0.5.1          flexmix_2.3-14         bindrcpp_0.2.2         robustbase_0.93-3     
## [49] fastcluster_1.1.25     HilbertVis_1.40.0      rjson_0.2.20           RColorBrewer_1.1-2    
## [53] tools_3.5.1            fpc_2.1-11.1           glue_1.3.0             trimcluster_0.1-2.1   
## [57] DEoptimR_1.0-8         purrr_0.2.5            colorspace_1.3-2       GenomicRanges_1.34.0  
## [61] prabclus_2.2-6         bindr_0.1.1            modeltools_0.2-22

你可能感兴趣的:(【r<-包】ComplexHeatmap(3):创建热图列表)