PKU 2406:Power Strings 【KMP】

Power Strings

Time Limit : 6000/3000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Other)
Total Submission(s) : 70   Accepted Submission(s) : 27
Problem Description
Given two strings a and b we define a*b to be their concatenation. For example, if a = "abc" and b = "def" then a*b = "abcdef". If we think of concatenation as multiplication, exponentiation by a non-negative integer is defined in the normal way: a^0 = "" (the empty string) and a^(n+1) = a*(a^n).
 

Input
Each test case is a line of input representing s, a string of printable characters. The length of s will be at least 1 and will not exceed 1 million characters. A line containing a period follows the last test case.
 

Output
For each s you should print the largest n such that s = a^n for some string a.
 

Sample Input
 
   
abcd aaaa ababab .
 

Sample Output
 
   
1 4 3
 

题意:给一个字符串S长度不超过10^6,求最大的n使得S由n个相同的字符串a连接而成,如:"ababab"则由n=3个"ab"连接而成,"aaaa"由n=4个"a"连接而成,"abcd"则由n=1个"abcd"连接而成。

定理:假设S的长度为len,则S存在循环子串,当且仅当,len可以被len - next[len]整除,最短循环子串为S[len - next[len]]

例子证明:
设S=q1q2q3q4q5q6q7q8,并设next[8] = 6,此时str = S[len - next[len]] = q1q2,由字符串特征向量next的定义可知,q1q2q3q4q5q6 = q3q4q5q6q7q8,即有q1q2=q3q4,q3q4=q5q6,q5q6=q7q8,即q1q2为循环子串,且易知为最短循环子串。由以上过程可知,若len可以被len - next[len]整除,则S存在循环子串,否则不存在。

解法:利用KMP算法,求字符串的特征向量next,若len可以被len - next[len]整除,则最大循环次数n为len/(len - next[len]),否则为1。

这个是我在一篇博客上看到的。。。不懂为什么。。。。如果有大神知道。。。望不吝赐教!!!

AC-code:

#include
#include
const int N=1001000;
char str[N];
int p[N],len;
void getp()
{
	int i=0,j=-1;
	p[i]=j;
	while(i



 

你可能感兴趣的:(==算法==,====C&&C++====,KMP算法)