- 数据结构应用实例(四)——最小生成树
cyzhou1221
数据结构基础数据结构
Content:一、问题描述二、算法思想三、代码实现四、两种算法的比较五、小结一、问题描述 利用prim算法和kruskal算法实现最小生成树问题;二、算法思想 首先判断图是否连通,只有在连通的情况下才进行最小树的生成;三、代码实现#include#include#include#definemaxx999999#pragmawarning(disable:4996)typedefstruct
- 数据结构与算法 - 贪心算法
临界点oc
数据结构与算法贪心算法算法
一、贪心例子贪心算法或贪婪算法的核心思想是:1.将寻找最优解的问题分为若干个步骤2.每一步骤都采用贪心原则,选取当前最优解3.因为没有考虑所有可能,局部最优的堆叠不一定让最终解最优贪心算法是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是最好或最优的算法。这种算法通常用于求解优化问题,如最小生成树、背包问题等。贪心算法的应用:1.背包问题:给定一组物品和一个背包
- C语言数据结构克鲁斯卡尔算法-求最小生成树
Yetteego
数据结构与算法(c语言)c语言C语言数据结构
/**克鲁斯卡尔算法*得到图的最小生成树*构造一个无向网的的邻接矩阵*创建一个临时数组*对edge数组进行排序*/#include#include#includetypedefchar*VertexType;//顶点的信息的数据类型typedefintArcType;//权重胡数据类型#defineVERTEXNUM100//最大顶点数#defineMAX_INT32726//权重的无限大取值#d
- 最短路算法一
halcyonfreed
算法
2024061819:33朴素版Dijkstra47:00Heap优化版1:04:00Bellman-ford最短路算法——5种!!!考察重点:不会考算法证明,这里不讲了,重点是实现+抽象1.如何建图——如何定义点边,抽象成一个图问题Prim/i/,kruskal是最小生成树算法不是prime/ai/质数1.是么时候用?方法n图的node数m边数单源:只有一个起点,求从1个点到其他所有点/第n号点
- BZOJ-2521: [Shoi2010]最小生成树(最小割)(本蒟蒻的BZOJ第401 AC撒花~)
AmadeusChan
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2521挺神奇的一个最小割模型,如果要使得该边一定在MST上,那么要保证该边连接的两个连通块之间不存在其他边权小于等于它的边,那么自然就最小割啦。代码:#include#include#includeusingnamespacestd;#definemaxn1010#definemaxv1010#
- 并查集【算法 12】
终末圆
算法算法cc++python数据结构acmc语言
并查集(Union-Find)的基础概念与实现并查集(Union-Find)是一种用于处理不相交集合(disjointsets)的数据结构,常用于解决连通性问题。典型的应用场景包括动态连通性问题(如网络节点连通性检测)、图论中的最小生成树(Kruskal算法)、社交网络中的群体归属等。并查集的两大基本操作合并操作(Union):将两个不同的集合合并为一个集合。查找操作(Find):查询某个元素属于
- 探索贪心算法:解决优化问题的高效策略
快乐非自愿
贪心算法算法
贪心算法是一种在每一步选择中都采取当前最佳选择的算法,以期在整体上达到最优解。它广泛应用于各种优化问题,如最短路径、最小生成树、活动选择等。本文将介绍贪心算法的基本概念、特点、应用场景及其局限性。贪心算法的基本概念贪心算法的核心思想是局部最优策略,即在每一步选择中都选择当前看起来最优的选项,希望通过一系列的局部最优选择达到全局最优。贪心算法的特点局部最优选择:每一步都选择当前状态下最优的操作。无需
- 数据结构——第六章 图
疯子书生z
数据结构数据结构
[知识框架]主要掌握深度优先搜索和广度优先搜索,图的基本概念及基本性质、图的存储结构(邻接矩阵、邻接表、邻接多重表和十字链表)及其特性、存储结构之间的转化、基于存储结构上的遍历操作和各种应用(拓扑排序、最小生成树、最短路径和关键路径)等。通常要求掌握基本思想和实现步骤(手动模拟)。6.1图的基本概念6.1.1图的定义图GGG由顶点集VVV和边集EEE组成,记为G=(V,E)G=(V,E)G=(V,
- 简单の暑假总结——最小生成树
C2024XSC184
笔记
6.1最小生成树我们先来了解一下最小生成树的概念:我们定义无向连通图的最小生成树(MinimumSpanningTree,MST)为边权和最小的生成树(树也叫做生成树)。——OIWiki我们举一个例子:在这样一个带权无向图中,它的最小生成树如下图所示,其权值为141414我们有222种算法来解决这个问题6.2Prim算法Prim算法无论是本质上还是代码上都与Dijkstra高度类似,本质上还是一个
- 最小生成树 - Kruskal算法
我想进大厂
算法c++图论
kruskal算法---求稀疏图的最小生成树步骤1,将所有边按权重从大到小排序,调用系统的sort函数2,枚举每条边a、b,权重cif(a、b不联通)就将这条边加入集合中输入格式第一行包含两个整数n和m。接下来m行,每行包含三个整数u,v,w,表示点u和点v之间存在一条权值为w的边。输出格式共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出impos
- 图与树的基本概念
小魏冬琅
其他算法
目录引言图与树结构的重要性图的基本概念图的表示方式图的遍历算法树的基本概念树的定义与性质树的遍历二叉树与多叉树的概念图与树的高级应用最短路径算法最小生成树算法总结与应用综合实例分析引言在计算机科学的世界中,图和树是两种非常重要的数据结构。它们不仅在理论上有着广泛的研究价值,更是在实际编程中广泛应用于网络通信、路径规划、数据库索引等领域。通过深入理解图与树的基本结构与算法,我们可以更高效地解决许多复
- 算法学习6——贪心算法
零 度°
算法学习算法学习贪心算法
什么是贪心算法?贪心算法是一种在每一步选择中都采取当前状态下最优或最有利的选择的算法。其核心思想是通过一系列局部最优选择来达到全局最优解。贪心算法广泛应用于各种优化问题,如最短路径、最小生成树、背包问题等。贪心算法的特点局部最优选择:每一步都做出在当前情况下最优的选择。无后效性:一旦某个状态被确定,就不会再被改变或回溯。逐步构造解决方案:通过一系列的选择逐步构建出最终的解决方案。经典例子及其Pyt
- pku acm 题目分类
moxiaomomo
算法数据结构numbers优化calendarcombinations
1.搜索//回溯2.DP(动态规划)3.贪心北大ACM题分类2009-01-2714.图论//Dijkstra、最小生成树、网络流5.数论//解模线性方程6.计算几何//凸壳、同等安置矩形的并的面积与周长sp;7.组合数学//Polya定理8.模拟9.数据结构//并查集、堆sp;10.博弈论1、排序sp;1423,1694,1723,1727,1763,1788,1828,1838,1840,22
- 蓝桥杯:C++贪心算法、字符串函数、朴素模式匹配算法、KMP算法
DaveVV
蓝桥杯c++蓝桥杯c++贪心算法算法开发语言数据结构c语言
贪心算法贪心(Greedy)算法的原理很容易理解:把整个问题分解成多个步骤,在每个步骤都选取当前步骤的最优方案,直到所有步骤结束;每个步骤都不考虑对后续步骤的影响,在后续步骤中也不再回头改变前面的选择。贪心算法虽然简单,但它有广泛的应用。例如图论中的最小生成树(MinimalSpanningTree,MST)算法、单源最短路径算法(Dijkstra)都是贪心算法的典型应用。贪心算法的主要问题是不一
- 【数据结构】图
rygttm
数据结构数据结构算法
文章目录图1.图的两种存储结构2.图的两种遍历方式3.最小生成树的两种算法(无向连通图一定有最小生成树)4.单源最短路径的两种算法5.多源最短路径图1.图的两种存储结构1.图这种数据结构相信大家都不陌生,实际上图就是另一种多叉树,每一个结点都可以向外延伸许多个分支去连接其他的多个结点,而在计算机中表示图其实很简单,只需要存储图的各个结点和结点之间的联系即可表示一个图,顶点可以采取数组vector存
- 软考30-上午题-数据结构-小结
ruleslol
软考中级学习笔记
一、杂题汇总真题1:有向图——AOV带权有向图——AOE真题2:二叉排序树:左子树<根节点<右子树。二叉排序树中序遍历,节点关键字有序(递增);关键字初始序列有序,二叉树是单支树。(无序,也可以是单支树)真题3:真题4:真题5:真题6:真题7:prim算法,时间复杂度为:O(n^2),n为图的顶点数。该算法的计算时间与图中的边数无关,所以,该算法适合边稠密的图的最小生成树。kruscal算法,时间
- 备战蓝桥杯---图论之最小生成树
CoCoa-Ck
图论算法蓝桥杯c++笔记
首先,什么是最小生成树?他就是无向图G中的所有生成树中树枝权值总和最小的。如何求?我们不妨采用以下的贪心策略:Prim算法(复杂度:(n+m)logm):我们对于把上述的点看成两个集合,一个是确定了最小生成树的点,一个还没有确定,我们只要不断把距离已经确定的集合的最短的边添加进去即可。假如我们加的距离不是最小的,那么当我们假设未确定的点已经构成了他们点的最小生成树,那么我们此时用距离最小的去添加他
- 最小生成树详解(Prim算法/Kruskal算法)
Stephen_Curry___
算法c++c语言数据结构图搜索算法
最小生成树⭐今天为大家带来的是最小生成树算法⭐在学习之前首先要搞清楚什么是最小生成树?给定一张边带权的无向图G=(V,E),其中V表示途中点的集合,E表示途中边的集合,=|V|,m=|E|。由V中的全部n个顶点和E中n-1条边构成的无向连通子图被称为G的以可生成树,其中边的权重之和最小被称为无向图G的最小生成树。所以最小生成树是用来计算最小边权问题。⭐最小生成树最常用的有两种算法:Prim算法(解
- 学习总结16
GGJJM
学习
#【模板】最小生成树##题目描述如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出`orz`。##输入格式第一行包含两个整数N,M,表示该图共有N个结点和M条无向边。接下来M行每行包含三个整数Xi,Yi,Zi,表示有一条长度为Zi的无向边连接结点Xi,Yi。##输出格式如果该图连通,则输出一个整数表示最小生成树的各边的长度之和。如果该图不连通则输出`orz`。##样例#1###样例输入#
- 2.13学习总结
啊这泪目了
学习
1.出差(Bleeman—ford)(spfa)(dijkstra)2.最小生成树(prim)(Kruskal)最短路问题:出差https://www.luogu.com.cn/problem/P8802题目描述AA国有�N个城市,编号为1…�1…N小明是编号为11的城市中一家公司的员工,今天突然接到了上级通知需要去编号为�N的城市出差。由于疫情原因,很多直达的交通方式暂时关闭,小明无法乘坐飞机直
- 挑战程序设计竞赛最小生成树习题(4道)及详解:C++实现
新西兰做的饭
图论挑战程序设计竞赛图论kruskalprim算法c++
最小生成树POJ1258:Agri-NetPOJ2377:BadCowtractorsPOJ2395:OutofHayAOJ2224:Saveyourcats这四道题比较基本,没有过多复杂的过程,所以整合在一篇博客,适合学过最小生成树算法后来加深理解POJ1258:Agri-Net点击进入题面最小生成树模板题,输入为图的邻接矩阵,所以优先考虑prim算法:#include#includeusing
- 算法导论23章最小生成树习题—23.2练习
之墨_
算法算法最小生成树
23.2-1对于同一个输人图,Kruskal算法返回的最小生成树可以不同。这种不同来源于对边进行排序时,对权重相同的边进行的不同处理。证明:对于图G的每棵最小生成树T,都存在一种办法来对G的边进行排序,使得Kruskal算法所返回的最小生成树就是T。假设我们想选择T作为最小生成树。然后,为了使用Kruskal算法获得此树,我们将首先按边的权重对边进行排序,然后通过选取包含在最小生成树中的一条边来解
- 生成树(习题)
白色的风扇
算法
模板】最小生成树生成树有两种方法,但是我只会克鲁斯卡尔算法,所以接下来下面的的题目都是按照这个算法来实现的,首先来见一下生么是这个算法,在之前的我写的一篇博客中有题使叫修复公路,其实这一题就是使用了这个算法:用一个结构体记录两个区域的编号,和着两条区域之间道路的价值,再利用sort(排序函数)按照从小到大进行排序(有些题目要按照从大到小进行排序),利用并查集将各个区域进链接,直到所有区域都链接起来
- Python使用kruskal算法实现最小生成树
X Y sawyer
网络python算法
假如有多台计算机组成的局域网,不同计算机之间是使用光纤来连接的,如果把计算机看成是一个简单的节点,连接计算机的光纤看成是一条边,那这个局域网就可以抽象成为一个无向图:添加图片注释,不超过140字(可选)而对于这个图中的每个圆圈代表的是一个计算机,直线代表的是计算机之间的光纤连接,直线上的数字表示维护该条光纤所需要付出的成本,那现在需要降低维护成本,希望在不同计算机能够相互通信的基础上,去掉不必要的
- 克鲁斯卡尔(Kruskal)算法与普里姆(Prim)算法求最小生成树
ZYT_庄彦涛
数据结构算法算法Kruskal算法Prim算法
求下面带权图的最小(代价)生成树时,可能是克鲁斯卡尔(Kruskal)算法第2次选中但不是普里姆(Prim)算法(从v4开始)第2次选中的边是()。A.(v₁,v₃)B.(v₁,v₄)C.(v₂,v₃)D.(v₃,v₄)首先,认识什么是克鲁斯卡尔Kruskal算法和普里姆Prim算法↓克鲁斯卡尔Kruskal算法在整个过程中都是选取网中权值为最小的边克鲁斯卡尔算法是一个使网中所有顶点相连通而所需边
- 【第二十三课】最小生成树:prime 和 kruskal 算法(acwing858,859 / c++代码 )
爱写文章的小w
算法--学习笔记算法图论c++
目录前言Prime算法--加点法acwing-858代码如下一些解释Kruskal算法--加边法acwing-859并查集与克鲁斯卡尔求最小生成树代码如下一些解释前言之前学最短路的时候,我们都是以有向图为基础的,当时我们提到如果是无向图,只要记得两个顶点处都要加边就好了。而在最小生成树的问题中,我们所面临的大多都是无向图。这个姐姐对这两种算法的讲解非常清晰,没有代码部分,但是对于理解这两种算法的做
- 图(高阶数据结构)
GG_Bond20
数据结构数据结构算法c++
目录一、图的基本概念二、图的存储结构2.1邻接矩阵2.2邻接表三、图的遍历3.1广度优先遍历3.2深度优先遍历四、最小生成树4.1Kruskal算法4.2Prim算法五、最短路径5.1单源最短路径-Dijkstra算法5.2单源最短路径-Bellman-Ford算法5.3多源最短路径-Floyd-Warshall算法一、图的基本概念图是由顶点集合和边的集合组成的一种数据结构,记作有向图与无向图在有
- 力扣刷题之旅:高阶篇(四)—— 最小生成树算法
GT开发算法工程师
算法leetcode图论python数据结构职场和发展
力扣(LeetCode)是一个在线编程平台,主要用于帮助程序员提升算法和数据结构方面的能力。以下是一些力扣上的入门题目,以及它们的解题代码。引言:在算法领域中,图论是一个重要且有趣的分支,而最小生成树问题则是图论中的一个经典问题。最小生成树算法用于在一个连通的加权无向图中找到一棵边权值之和最小的生成树。在实际应用中,最小生成树算法常用于网络设计、电路设计等领域。一、最小生成树算法简介最小生成树算法
- 图论 理论以及相关题目题解的小结
芋圆西米露
【图论】吸吸吸国宝镇帖目录【图论】理论题解【搜索】【并查集】【最小生成树】【最短路】【拓扑排序】【二叉树】【简单图】【最小割】理论图论入门一图论入门二图论入门三图论入门四图论入门五图论入门六图论入门七-最小生成树图论入门八-Kruskal算法图论入门九-Prim算法求最短路径的四种方法(Dijkstra,Floyd,Bellman-Ford,SPFA算法)并查集入门(普通并查集+带删除并查集+关系
- 第三章 搜索与图论(三)(最小生成树,二分图)
一只程序媛li
蓝桥准备图论算法
一、最小生成树算法稠密图使用prim算法,稀疏图使用kruskal算法二、prim算法求最小生成树prim和dijkstra算法类似,都是找到符合某种条件的点,然后更新。prim使用到已经构成的部分最小树所有结点中最小的距离。dijkstra算法是使用到起点最小的距离。#include//858prim最小生成树(稠密图做法)usingnamespacestd;constintN=210,INF=
- 安装数据库首次应用
Array_06
javaoraclesql
可是为什么再一次失败之后就变成直接跳过那个要求
enter full pathname of java.exe的界面
这个java.exe是你的Oracle 11g安装目录中例如:【F:\app\chen\product\11.2.0\dbhome_1\jdk\jre\bin】下的java.exe 。不是你的电脑安装的java jdk下的java.exe!
注意第一次,使用SQL D
- Weblogic Server Console密码修改和遗忘解决方法
bijian1013
Welogic
在工作中一同事将Weblogic的console的密码忘记了,通过网上查询资料解决,实践整理了一下。
一.修改Console密码
打开weblogic控制台,安全领域 --> myrealm -->&n
- IllegalStateException: Cannot forward a response that is already committed
Cwind
javaServlets
对于初学者来说,一个常见的误解是:当调用 forward() 或者 sendRedirect() 时控制流将会自动跳出原函数。标题所示错误通常是基于此误解而引起的。 示例代码:
protected void doPost() {
if (someCondition) {
sendRedirect();
}
forward(); // Thi
- 基于流的装饰设计模式
木zi_鸣
设计模式
当想要对已有类的对象进行功能增强时,可以定义一个类,将已有对象传入,基于已有的功能,并提供加强功能。
自定义的类成为装饰类
模仿BufferedReader,对Reader进行包装,体现装饰设计模式
装饰类通常会通过构造方法接受被装饰的对象,并基于被装饰的对象功能,提供更强的功能。
装饰模式比继承灵活,避免继承臃肿,降低了类与类之间的关系
装饰类因为增强已有对象,具备的功能该
- Linux中的uniq命令
被触发
linux
Linux命令uniq的作用是过滤重复部分显示文件内容,这个命令读取输入文件,并比较相邻的行。在正常情 况下,第二个及以后更多个重复行将被删去,行比较是根据所用字符集的排序序列进行的。该命令加工后的结果写到输出文件中。输入文件和输出文件必须不同。如 果输入文件用“- ”表示,则从标准输入读取。
AD:
uniq [选项] 文件
说明:这个命令读取输入文件,并比较相邻的行。在正常情况下,第二个
- 正则表达式Pattern
肆无忌惮_
Pattern
正则表达式是符合一定规则的表达式,用来专门操作字符串,对字符创进行匹配,切割,替换,获取。
例如,我们需要对QQ号码格式进行检验
规则是长度6~12位 不能0开头 只能是数字,我们可以一位一位进行比较,利用parseLong进行判断,或者是用正则表达式来匹配[1-9][0-9]{4,14} 或者 [1-9]\d{4,14}
&nbs
- Oracle高级查询之OVER (PARTITION BY ..)
知了ing
oraclesql
一、rank()/dense_rank() over(partition by ...order by ...)
现在客户有这样一个需求,查询每个部门工资最高的雇员的信息,相信有一定oracle应用知识的同学都能写出下面的SQL语句:
select e.ename, e.job, e.sal, e.deptno
from scott.emp e,
(se
- Python调试
矮蛋蛋
pythonpdb
原文地址:
http://blog.csdn.net/xuyuefei1988/article/details/19399137
1、下面网上收罗的资料初学者应该够用了,但对比IBM的Python 代码调试技巧:
IBM:包括 pdb 模块、利用 PyDev 和 Eclipse 集成进行调试、PyCharm 以及 Debug 日志进行调试:
http://www.ibm.com/d
- webservice传递自定义对象时函数为空,以及boolean不对应的问题
alleni123
webservice
今天在客户端调用方法
NodeStatus status=iservice.getNodeStatus().
结果NodeStatus的属性都是null。
进行debug之后,发现服务器端返回的确实是有值的对象。
后来发现原来是因为在客户端,NodeStatus的setter全部被我删除了。
本来是因为逻辑上不需要在客户端使用setter, 结果改了之后竟然不能获取带属性值的
- java如何干掉指针,又如何巧妙的通过引用来操作指针————>说的就是java指针
百合不是茶
C语言的强大在于可以直接操作指针的地址,通过改变指针的地址指向来达到更改地址的目的,又是由于c语言的指针过于强大,初学者很难掌握, java的出现解决了c,c++中指针的问题 java将指针封装在底层,开发人员是不能够去操作指针的地址,但是可以通过引用来间接的操作:
定义一个指针p来指向a的地址(&是地址符号):
- Eclipse打不开,提示“An error has occurred.See the log file ***/.log”
bijian1013
eclipse
打开eclipse工作目录的\.metadata\.log文件,发现如下错误:
!ENTRY org.eclipse.osgi 4 0 2012-09-10 09:28:57.139
!MESSAGE Application error
!STACK 1
java.lang.NoClassDefFoundError: org/eclipse/core/resources/IContai
- spring aop实例annotation方法实现
bijian1013
javaspringAOPannotation
在spring aop实例中我们通过配置xml文件来实现AOP,这里学习使用annotation来实现,使用annotation其实就是指明具体的aspect,pointcut和advice。1.申明一个切面(用一个类来实现)在这个切面里,包括了advice和pointcut
AdviceMethods.jav
- [Velocity一]Velocity语法基础入门
bit1129
velocity
用户和开发人员参考文档
http://velocity.apache.org/engine/releases/velocity-1.7/developer-guide.html
注释
1.行级注释##
2.多行注释#* *#
变量定义
使用$开头的字符串是变量定义,例如$var1, $var2,
赋值
使用#set为变量赋值,例
- 【Kafka十一】关于Kafka的副本管理
bit1129
kafka
1. 关于request.required.acks
request.required.acks控制者Producer写请求的什么时候可以确认写成功,默认是0,
0表示即不进行确认即返回。
1表示Leader写成功即返回,此时还没有进行写数据同步到其它Follower Partition中
-1表示根据指定的最少Partition确认后才返回,这个在
Th
- lua统计nginx内部变量数据
ronin47
lua nginx 统计
server {
listen 80;
server_name photo.domain.com;
location /{set $str $uri;
content_by_lua '
local url = ngx.var.uri
local res = ngx.location.capture(
- java-11.二叉树中节点的最大距离
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class MaxLenInBinTree {
/*
a. 1
/ \
2 3
/ \ / \
4 5 6 7
max=4 pass "root"
- Netty源码学习-ReadTimeoutHandler
bylijinnan
javanetty
ReadTimeoutHandler的实现思路:
开启一个定时任务,如果在指定时间内没有接收到消息,则抛出ReadTimeoutException
这个异常的捕获,在开发中,交给跟在ReadTimeoutHandler后面的ChannelHandler,例如
private final ChannelHandler timeoutHandler =
new ReadTim
- jquery验证上传文件样式及大小(好用)
cngolon
文件上传jquery验证
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script src="jquery1.8/jquery-1.8.0.
- 浏览器兼容【转】
cuishikuan
css浏览器IE
浏览器兼容问题一:不同浏览器的标签默认的外补丁和内补丁不同
问题症状:随便写几个标签,不加样式控制的情况下,各自的margin 和padding差异较大。
碰到频率:100%
解决方案:CSS里 *{margin:0;padding:0;}
备注:这个是最常见的也是最易解决的一个浏览器兼容性问题,几乎所有的CSS文件开头都会用通配符*来设
- Shell特殊变量:Shell $0, $#, $*, $@, $?, $$和命令行参数
daizj
shell$#$?特殊变量
前面已经讲到,变量名只能包含数字、字母和下划线,因为某些包含其他字符的变量有特殊含义,这样的变量被称为特殊变量。例如,$ 表示当前Shell进程的ID,即pid,看下面的代码:
$echo $$
运行结果
29949
特殊变量列表 变量 含义 $0 当前脚本的文件名 $n 传递给脚本或函数的参数。n 是一个数字,表示第几个参数。例如,第一个
- 程序设计KISS 原则-------KEEP IT SIMPLE, STUPID!
dcj3sjt126com
unix
翻到一本书,讲到编程一般原则是kiss:Keep It Simple, Stupid.对这个原则深有体会,其实不仅编程如此,而且系统架构也是如此。
KEEP IT SIMPLE, STUPID! 编写只做一件事情,并且要做好的程序;编写可以在一起工作的程序,编写处理文本流的程序,因为这是通用的接口。这就是UNIX哲学.所有的哲学真 正的浓缩为一个铁一样的定律,高明的工程师的神圣的“KISS 原
- android Activity间List传值
dcj3sjt126com
Activity
第一个Activity:
import java.util.ArrayList;import java.util.HashMap;import java.util.List;import java.util.Map;import android.app.Activity;import android.content.Intent;import android.os.Bundle;import a
- tomcat 设置java虚拟机内存
eksliang
tomcat 内存设置
转载请出自出处:http://eksliang.iteye.com/blog/2117772
http://eksliang.iteye.com/
常见的内存溢出有以下两种:
java.lang.OutOfMemoryError: PermGen space
java.lang.OutOfMemoryError: Java heap space
------------
- Android 数据库事务处理
gqdy365
android
使用SQLiteDatabase的beginTransaction()方法可以开启一个事务,程序执行到endTransaction() 方法时会检查事务的标志是否为成功,如果程序执行到endTransaction()之前调用了setTransactionSuccessful() 方法设置事务的标志为成功则提交事务,如果没有调用setTransactionSuccessful() 方法则回滚事务。事
- Java 打开浏览器
hw1287789687
打开网址open浏览器open browser打开url打开浏览器
使用java 语言如何打开浏览器呢?
我们先研究下在cmd窗口中,如何打开网址
使用IE 打开
D:\software\bin>cmd /c start iexplore http://hw1287789687.iteye.com/blog/2153709
使用火狐打开
D:\software\bin>cmd /c start firefox http://hw1287789
- ReplaceGoogleCDN:将 Google CDN 替换为国内的 Chrome 插件
justjavac
chromeGooglegoogle apichrome插件
Chrome Web Store 安装地址: https://chrome.google.com/webstore/detail/replace-google-cdn/kpampjmfiopfpkkepbllemkibefkiice
由于众所周知的原因,只需替换一个域名就可以继续使用Google提供的前端公共库了。 同样,通过script标记引用这些资源,让网站访问速度瞬间提速吧
- 进程VS.线程
m635674608
线程
资料来源:
http://www.liaoxuefeng.com/wiki/001374738125095c955c1e6d8bb493182103fac9270762a000/001397567993007df355a3394da48f0bf14960f0c78753f000 1、Apache最早就是采用多进程模式 2、IIS服务器默认采用多线程模式 3、多进程优缺点 优点:
多进程模式最大
- Linux下安装MemCached
字符串
memcached
前提准备:1. MemCached目前最新版本为:1.4.22,可以从官网下载到。2. MemCached依赖libevent,因此在安装MemCached之前需要先安装libevent。2.1 运行下面命令,查看系统是否已安装libevent。[root@SecurityCheck ~]# rpm -qa|grep libevent libevent-headers-1.4.13-4.el6.n
- java设计模式之--jdk动态代理(实现aop编程)
Supanccy2013
javaDAO设计模式AOP
与静态代理类对照的是动态代理类,动态代理类的字节码在程序运行时由Java反射机制动态生成,无需程序员手工编写它的源代码。动态代理类不仅简化了编程工作,而且提高了软件系统的可扩展性,因为Java 反射机制可以生成任意类型的动态代理类。java.lang.reflect 包中的Proxy类和InvocationHandler 接口提供了生成动态代理类的能力。
&
- Spring 4.2新特性-对java8默认方法(default method)定义Bean的支持
wiselyman
spring 4
2.1 默认方法(default method)
java8引入了一个default medthod;
用来扩展已有的接口,在对已有接口的使用不产生任何影响的情况下,添加扩展
使用default关键字
Spring 4.2支持加载在默认方法里声明的bean
2.2
将要被声明成bean的类
public class DemoService {