文章参考:数位dp之总结
首先,什么是数位dp?它是干什么的?
数位dp是一种计数用的dp,一般就是要统计一个区间[le,ri]内满足一些条件数的个数。
举个栗子:
加入我们要枚举所有上界不超过231的数,那么我们一般的做法就是:
for(int i=le;i<=ri;i++)
if(right(i)) ans++;
这里的le和ri分别是0和231。
方法可以是可以,但是有时候枚举量会太大,这里采用新的枚举方法:
从高位起,每次枚举每一位的数,要求每次枚举都不能超过231,比如第一位你的上界是2,那么你就只能枚举0或1或2。当你第一位枚举1的时候,你第二位就可以随便枚举0~9;但当你第一位枚举的是2,接下来那一位便只能枚举0~3。以此类推,总之就是枚举的数不能超过规定的这个上界。与此同时要注意能否出现前导0,这个看题目,代码中的lead代表了前导0。
模板代码:
typedef long long ll;
int a[20];
ll dp[20][state];//不同题目状态不同
//有人可能想到把dp状态改一下dp[pos][state][limit]就是分别记录不同limit下的个数
ll dfs(int pos,/*state变量*/,bool lead/*前导零*/,bool limit/*数位上界变量*/)//不是每个题都要判断前导零
{
//递归边界,既然是按位枚举,最低位是0,那么pos==-1说明这个数我枚举完了
if(pos==-1) return 1;/*这里一般返回1,表示你枚举的这个数是合法的,那么这里就需要你在枚举时必须每一位都要满足题目条件,也就是说当前枚举到pos位,一定要保证前面已经枚举的数位是合法的。不过具体题目不同或者写法不同的话不一定要返回1 */
//第二个就是记忆化(在此前可能不同题目还能有一些剪枝)
if(!limit && !lead && dp[pos][state]!=-1) return dp[pos][state];
/*常规写法都是在没有限制的条件记忆化,这里与下面记录状态是对应,具体为什么是有条件的记忆化后面会讲*/
int up=limit?a[pos]:9;//根据limit判断枚举的上界up;这个的例子前面用213讲过了
ll ans=0;
//开始计数
for(int i=0;i<=up;i++)//枚举,然后把不同情况的个数加到ans就可以了
{
if() ...
else if()...
ans+=dfs(pos-1,/*状态转移*/,lead && i==0,limit && i==a[pos]) //最后两个变量传参都是这样写的
/*这里还算比较灵活,不过做几个题就觉得这里也是套路了
大概就是说,我当前数位枚举的数是i,然后根据题目的约束条件分类讨论
去计算不同情况下的个数,还有要根据state变量来保证i的合法性,比如题目
要求数位上不能有62连续出现,那么就是state就是要保存前一位pre,然后分类,
前一位如果是6那么这意味就不能是2,这里一定要保存枚举的这个数是合法*/
}
//计算完,记录状态
if(!limit && !lead) dp[pos][state]=ans;
/*这里对应上面的记忆化,在一定条件下时记录,保证一致性,当然如果约束条件不需要考虑lead,这里就是lead就完全不用考虑了*/
return ans;
}
ll solve(ll x)
{
int pos=0;
while(x)//把数位都分解出来
{
a[pos++]=x%10;//个人老是喜欢编号为[0,pos),看不惯的就按自己习惯来,反正注意数位边界就行
x/=10;
}
return dfs(pos-1/*从最高位开始枚举*/,/*一系列状态 */,true,true);//刚开始最高位都是有限制并且有前导零的,显然比最高位还要高的一位视为0嘛
}
int main()
{
ll le,ri;
while(~scanf("%lld%lld",&le,&ri))
{
//初始化dp数组为-1,这里还有更加优美的优化,后面讲
printf("%lld\n",solve(ri)-solve(le-1));
}
}
例题:bzoj1026 Windy数
题意:
windy定义了一种windy数。不含前导零且相邻两个数字之差至少为2的正整数被称为windy数。 windy想知道,在A和B之间,包括A和B,总共有多少个windy数?
输入为两个整数,输出windy数的个数。
代码如下:
#include
#include
#include
#include
using namespace std;
typedef long long ll;
ll l, r;
ll dp[25][25][2];
int dig[25];
ll dfs(int pos, int pre, bool limit, bool lead) {
if (pos < 0)return 1;
if (!limit && dp[pos][pre][lead] != -1)
return dp[pos][pre][lead];
ll ans = 0;
int up = limit ? dig[pos]: 9;
for (int i = 0; i <= up; i++) {
if (lead||abs(i - pre) >= 2) {
ans += dfs(pos - 1, i, limit && (i == up), lead && (i == 0));
}
}
if (!limit)dp[pos][pre][lead] = ans;
return ans;
}
ll cal(ll n) {
int len = 0;
memset(dp, -1, sizeof(dp));
while (n) {
dig[len++] = n % 10;
n /= 10;
}
return dfs(len - 1, 0, true,1);
}
int main() {
scanf("%lld%lld", &l, &r);
printf("%lld", cal(r) - cal(l - 1));
return 0;
}