- flink反压详解
24k小善
flink架构大数据AI编程
Flink背压/反压(Backpressure)详解在ApacheFlink中,背压(Backpressure)是一个常见的性能问题,通常表现为数据流在某些节点处积压,导致整体处理速度下降甚至停滞。背压的发生可能源于硬件资源限制、任务逻辑复杂性、数据分布不均或外部系统瓶颈等因素。本文将从多个角度详细讲解Flink的背压问题,包括其成因、影响以及解决方案。一、什么是Flink背压?背压是指在数据流处
- Python网络爬虫-WebSocket数据抓取
程序小勇
faiss爬虫python网络协议websocket开发语言
目录前言1、WebSocket请求的分析通常涉及以下几个方面:2、利用WebSocket爬取数据总结最后,创作不易!非常感谢大家的关注、点赞、评论啦!谢谢三连哦!好人好运连连,学习进步!工作顺利哦!博主介绍:✌专注于前后端、机器学习、人工智能应用领域开发的优质创作者、秉着互联网精神开源贡献精神,答疑解惑、坚持优质作品共享。本人是掘金/腾讯云/阿里云等平台优质作者、擅长前后端项目开发和毕业项目实战,
- Pytorch实现论文:利用推土机距离与梯度惩罚在ACGAN中训练。
这张生成的图像能检测吗
优质GAN模型训练自己的数据集pytorch人工智能深度学习gan机器学习生成对抗网络
论文简介论文:ACWGAN-GPformillingtoolbreakagemonitoringwithimbalanceddata(ACWGAN-GP用于铣削工具断裂监视的数据不平衡数据)出处:RoboticsandComputer-IntegratedManufacturing论文摘要:铣削操作过程中的刀具破损监测(TBM)对于确保工件质量和最大限度减少经济损失至关重要。在训练数据充足、分布均
- 【微服务】Nacos Discovery--服务治理
SoftwareDevOps
微服务分布式Nacos微服务注册中心服务治理
NacosDiscovery--服务治理前言服务治理常见的注册中心ZookeeperEurekaConsulNacosNacos入门搭建nacos环境将商品微服务注册到nacos将订单微服务注册到nacos总结前言上一章中,我们利用用户–订单–商品,实现了三个简单的微服务,实现了微服务之间的调用。但不知道大家有没有发现,我们是通过硬编码的方式,把服务者,消费者的服务Url,写到了代码中,这样做肯定
- Unity UI优化总结
Don里个冬
Unity3D技术分享unityunity3dugui
UnityUI优化总结前言最近又再一次回顾总结了一下UnityUI的优化,在此作下笔记,供学习参考。核心四大问题在Unity中UI优化的核心问题就是重绘和批处理之间的平衡。虽然说可以通过一些简单的技巧单方面地减少批次或者减少重绘,但进行过一波优化之后,最终还是要面临批次和重绘的平衡问题的。常见的四大UI优化问题:1、片段着色器利用率过高(或者说GPUfill-rate填充率过高),即每个片段处理的
- python 山脊图_(数据科学学习手札98)纯Python绘制满满艺术感的山脊地图
weixin_39780255
python山脊图
1简介下面的这幅图可能很多读者朋友们都看到过,这是英国摇滚乐队JoyDivision在1979年发行的其第一张录音室专辑UnknownPleasures的封面,由艺术家PeterSaville基于射电脉冲星信号的数据图创作而成,成为了一种流行文化的符号标志。图1类似图1的风格,在地图制作中也存在着一种山脊地图,基于记录地表海拔信息的高程数据,我们可以利用水平方向上的基于实际位置海拔高度的曲线,来对
- ffmpeg实现视频拼接,图片生成视频demo
德玛西亚没有明天
ffmpeg音视频
利用ffmpeg实现图片生成视频,视频拼接,添加字幕等$img){//添加背景//$returnImg="backImg{$key}.jpg";//$output="output{$key}.mp4";//$returnImg=$this->addBack($img,$returnImg);$output="output0.mp4";$returnImg="backImg0.jpg";$time=
- LeetCode解决方案集:编程与面试技能提升
徐子贡
本文还有配套的精品资源,点击获取简介:LeetCode是一个编程训练平台,提供了大量编程题目,用于提升开发者的算法技能和面试准备。本文将探讨名为"some-leetcode-solutions"的开源项目,其中包括LeetCode问题的多种编程语言解决方案。这些解决方案由社区成员贡献,可用于学习不同思路和比较语言实现。开源项目遵循开源协议,允许自由使用和修改代码,鼓励知识共享。本文还强调了学习算法
- Java利用itextpdf实现pdf文件生成
小码农吗
日常栏目javapdfajax
前言最近公司让写一个数据页面生成pdf的功能,找了一些市面代码感觉都太麻烦,就自己综合性整合了一个便捷的工具类,开发只需简单组装数据直接调用即可快速生成pdf文件。望大家一起学习!!!代码获取方式:资源下载下载源码后台私信(一键三连哦!!!)二、前期准备1、html模版(放置接口所在项目的resourcess/templates/)需要准备一个要看到的pdf模版,利用html代码形式简单输出,其中
- C#——垃圾回收(GC)
面向大象编程
C#c#开发语言面向对象编程
文章目录前言一、垃圾回收是什么二、好处三、GC过程1.GC条件2.GC步骤3.Mark-Compact标记压缩算法4.Generational分代算法5.FinalizationQueue和FreachableQueue四、托管和非托管资源1.托管资源2.非托管资源五、GC注意事项参考前言C#的垃圾回收网上有很多博客进行讲解,这里摘录一部分较好的讲解,同时建议直接使用微软官方文档,万变不离其宗一、
- C#托管类型与非托管类型简析
_DRAGON__XU
C#c#开发语言
C#托管类型与非托管类型定义托管对象指的是.net可以自动进行回收的资源,主要是指托管对象在堆上分配的内存资源。托管资源的回收工作是不需要人工干预的,有.net运行库在合适的时间进行回收。当然,也可以使用GC.Collect手动回收。非托管对象指.net不知道如何回收的资源。例如文件、窗口、网络连接、数据库连接、画刷、图标等。这类资源,垃圾回收器在清理的时候会调用Object.Finalize()
- 为什么数据库和数据库连接池不采用类似java nio的IO多路复用技术使用一个连接来维护和数据库的数据交换?
harmful_sheep
springboot数据库javanio
类似java的nio相比于传统阻塞io模型来说,有效率高(特别在高并发情况下)和资源耗费相对较少的优点。传统的阻塞IO为了提高效率,需要创建一定数量的连接形成连接池,而nio仅需要一个连接即可(大部分情况下一个连接即可)。那么请问,数据库和数据库连接池为什么不采用这种方式?。IO多路复用被视为是非常好的性能助力器。但是一般我们在使用DB时,还是经常性采用c3p0,tomcatconnectionp
- 利用 OpenCV 进行棋盘检测与透视变换
萧鼎
python基础到进阶教程opencv人工智能计算机视觉
利用OpenCV进行棋盘检测与透视变换1.引言在计算机视觉领域,棋盘检测与透视变换是一个常见的任务,广泛应用于摄像机标定、文档扫描、增强现实(AR)等场景。本篇文章将详细介绍如何使用OpenCV进行棋盘检测,并通过透视变换将棋盘区域转换为一个标准的矩形图像。我们将基于一段Python代码进行分析,代码的主要任务包括:读取图像并进行预处理(灰度转换、自适应直方图均衡化、去噪)检测边缘并提取棋盘区域计
- FunASR服务器部署(CPU+GPU)
之群害马
服务器eureka运维
自行下载funasr-cpu/gpu和asrmodel-deploy-cpu/gpu压缩包,官方都有cpu版运行:cd/home/user/data/AIModels/FunASR_docker/deploy_resourcessudodockerload-ifunasr-runtime-sdk-cpu-0.4.4_w_models_v0.2.1.tarcdasrmodel-deploy-cpus
- Python 用pytorch从头写Transformer源码,一行一解释;机器翻译实例代码;Transformer源码解读与实战
医学小达人
NLPLLMsGPT深度学习人工智能transformerpython机器学习
1.Transformer简介Transformer模型被提出的主要动机是解决序列处理任务的长距离依赖问题。传统的RNN和LSTM虽然能够处理序列任务,但因为它们在处理序列时需要一步步前进,因此其他信息无法立即对其产生影响,当序列变长时,长距离依赖的信息很可能会被丢失。为了解决这个问题,Transformer模型被设计出来,内核思想是利用自注意力机制,这样模型可以直接对输入序列的任意两个位置建立直
- 联想E470 双GPU笔记本部署私有AI模型方案
月光技术杂谈
大模型初探人工智能ChatGLM3联想E470Qwen-7BPhi-3-mini
背景:手上有一台联想E470的闲置笔记本,配置如下:(IntelHD620核显+NVIDIA920MX独显,i5-7200UCPU),想用它来部署并学习AI模型。考虑到电脑的性能限制,打算采用「量化模型+知识蒸馏」的低成本部署方案。一、硬件适配优化方案显存限制突破使用4-bit量化技术压缩模型,例如加载ChatGLM3-6B的INT4版本,显存需求可降至6GB310启用CPU-GPU混合推理(通过
- 采用分布式部署deepseek
慧香一格
AI学习分布式deepseek
分布式部署DeepSeek涉及使用多个计算节点来加速模型训练或提升推理效率。下面是一个基本的指南,帮助您了解如何进行分布式部署。1.环境准备硬件需求:确保您的集群环境中有足够的GPU资源,并且所有机器之间可以通过高速网络互联。软件依赖:安装必要的库和工具,如PyTorch、Transformers等。特别地,对于分布式训练,还需要安装torch.distributed或者类似的库支持,例如Horo
- 【卡车无人机】遗传算法GA求解卡车联合无人机配送路径规划【含Matlab源码 XYDG001期】
Matlab领域
Matlab路径规划(高阶版)matlab
Matlab领域博客之家博主简介:985研究生,Matlab领域科研开发者;个人主页:Matlab领域代码获取方式:CSDNMatlab领域—代码获取方式座右铭:路漫漫其修远兮,吾将上下而求索。更多Matlab路径规划仿真内容点击①Matlab路径规划(高阶版)②付费专栏Matlab路径规划(进阶版)③付费专栏Matlab路径规划(初级版)⛳️关注CSDNMatlab领域,更多资源等你来!!⛄一、
- 微服务之网关
qq_40784183
微服务负载均衡架构
1.网关的选择Zuul和SpringCloudGateway(其他没用过了)2.Zuul(NetflixZuul)与SpringCloudGateway对比性能方面Zuul:Zuul1.x是基于Servlet的同步阻塞模型,在处理高并发请求时性能相对较弱。每个请求都会占用一个线程,当并发量较大时,线程资源可能会成为瓶颈。不过,Zuul2.x版本在性能上有所改进,采用了异步非阻塞模型,能够更好地处理
- 多租户技术架构
孜泽
架构数据库架构租户
一、多租户的概念多租户本质上是一种软件的技术架构,它最核心的特征是多个租户可以共享一个系统实例,并且租户间是可以实现数据和行为的隔离,这可以说是多租户技术架构里最重要的两点了。多租户架构是SaaS模式中的重要且常见的架构,通过共享和复用资源降低成本,提高效率和可扩展性。其中最需要关注就是:数据/行为的隔离、身份/角色的认证与授权、底层硬件资源管理、高性能与高可用、定制化和可扩展、数据一致性、系统安
- 强化学习:原理、概念与代码实践
AndrewHZ
深度学习新浪潮人工智能深度学习强化学习机器学习算法deepseek
一、引言强化学习(ReinforcementLearning)作为机器学习的一个重要分支,旨在通过智能体(agent)与环境的交互,学习到最优的行为策略,以最大化长期累积奖励。它在机器人控制、游戏、自动驾驶、资源管理等众多领域都取得了显著的成功。本文将深入介绍强化学习的数学原理、核心概念,并通过公式推导来加深理解,同时结合一个具体的实例,使用Python语言进行代码实现,帮助读者全面掌握强化学习的
- 中华人民共和国网络安全笔记
_DT9825
笔记
《中华人民共和国网络安全法》的考试要点总结一、基础信息1.立法时间-2016年11月7日通过,2017年6月1日起施行。2.立法目的-保障网络安全,维护网络空间主权、国家安全和社会公共利益,保护公民、法人合法权益。3.适用范围-在中国境内建设、运营、维护和使用网络,以及网络安全的监督管理。二、重点章节与核心内容第一章总则1.基本原则-网络安全与信息化发展并重,坚持积极利用、科学发展、依法管理、确保
- 云计算——AWS Solutions Architect – Associate(saa)6.CloudWatch
F——
云计算云计算aws学习服务器
AmazonCloudWatch是一种面向开发运营工程师、开发人员、站点可靠性工程师(SRE)和IT经理的监控和可观测性服务。CloudWatch为我们提供相关数据和切实见解,以监控应用程序、响应系统范围的性能变化、优化资源利用率,并在统一视图中查看运营状况。CloudWatch以日志、指标和事件的形式收集监控和运营数据,让我们能够在统一查看在AWS和本地服务器上运行的资源、应用程序和服务。我们可
- Windows线程同步—Critical_Section(临界区)深度解析与实战指南
和舒貌
windowsc++网络信息与通信后端
C++Critical_Section深度解析与实战指南一、线程同步的必要性在多线程编程中,当多个线程访问共享资源时(如全局变量、文件、内存区域等),会出现竞态条件(RaceCondition)。例如两个线程同时对同一个变量进行累加操作,可能导致结果不符合预期:线程A共享变量x=0线程B读取x=0读取x=0计算x+1=1计算x+1=1写入x=1写入x=1线程A共享变量x=0线程B关键问题分析:线程
- 360智算中心:万卡GPU集群落地实践
ZVAyIVqt0UFji
360智算中心是一个融合了人工智能、异构计算、大数据、高性能网络、AI平台等多种技术的综合计算设施,旨在为各类复杂的AI计算任务提供高效、智能化的算力支持。360智算中心不仅具备强大的计算和数据处理能力,还结合了AI开发平台,使得计算资源的使用更加高效和智能化。360内部对于智算中心的核心诉求是性能和稳定性,本文将深入探讨360智算中心在万卡GPU集群中的落地实践过程,包括算力基础设施搭建、集群优
- 大规模GPU集群的进阶之路
卢旗
人工智能
大家好,我是卢旗。今天来聊聊GPU。GPU,全称GraphicProcessingUnit,即图形处理器。它的并行处理能力非常强大,能够同时处理多个任务和数据,因此被广泛用于图形渲染、视频处理、深度学习、科学计算等领域。研发团队在负责制定硬件选型策略并设计优化下一代大规模GPU集群的软硬件架构时,我们需要关注GPU技术的最新进展、重点研究问题以及潜在的技术突破。一、GPU在重点研究的问题算力提升与
- 什么是Scaling Laws(缩放定律);DeepSeek的Scaling Laws
ZhangJiQun&MXP
教学2024大模型以及算力2021论文人工智能自然语言处理神经网络语言模型深度学习
什么是ScalingLaws(缩放定律)ScalingLaws(缩放定律)在人工智能尤其是深度学习领域具有重要意义,以下是相关介绍及示例:定义与内涵ScalingLaws主要描述了深度学习模型在规模(如模型参数数量、训练数据量、计算资源等)不断扩大时,模型性能与这些规模因素之间的定量关系。它表明,在一定条件下,模型的性能会随着模型规模的增加而以某种可预测的方式提升,通常表现为模型的损失函数值随模型
- 智能算力中心万卡GPU集群架构深度解析
科技互联人生
科技数码人工智能人工智能gpu算力硬件架构
智能算力中心万卡GPU集群架构深度分析 自ChatGPT发布,科技界大模型竞赛如火如荼。数据成新生产要素,算力成新基础能源,大模型成新生产工具,“AI+”转型势不可挡。模型参数量突破万亿,对算力需求升级,超万卡集群成基建竞赛标配。超万卡集群缩短训练时间,加速迭代,助力市场趋势应对。在超万卡集群中,高效稳定地训练大模型面临双重挑战:确保集群算力最大化、网
- Cesium高级开发教程之四十:分层分户单体化
CesiumMaster
Cesium开发教程前端javascriptCesiumhtml
一、效果图1、单体化定义:将三维场景中的对象从整体中分离出来,使其能够单独进行操作、查询、显示等,比如将一个小区中的每栋楼、每一层、每个房间都作为独立的个体进行处理。实现方式通过数据内部属性单体化:利用3DTiles数据本身包含的属性信息,对数据进行分类和筛选,来实现单体化效果。例如在Cesium官网案例中,可通过对3DTiles的某个属性进行分段达到分类目的。矢量面叠加单体化:先添加3DTile
- HarmonyOS Next模型轻量化的综合应用与未来展望
harmonyos
本文旨在深入探讨华为鸿蒙HarmonyOSNext系统(截止目前API12)中模型轻量化的综合应用及未来发展趋势,基于实际开发实践进行总结。主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。本文为原创内容,任何形式的转载必须注明出处及原作者。一、综合应用案例深度剖析(一)案例选择:智能驾驶场景智能驾驶是一个对模型性能、实时性和资源利用要求极高的复杂应用场景。在智能
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo