- 揭秘DeepSeek内幕:清华教授剖析AI模型技术原理
大模型.
人工智能chatgpt安全agigpt大模型deepseek
从ChatGPT到各种新兴的AI模型,每一次技术突破都能引发广泛的关注和讨论——而最近AI界的“新宠”,无疑是DeepSeek。在本文中,清华大学长聘副教授将深入剖析DeepSeekR1背后的大规模强化学习技术及其基本原理,并进一步展望大模型技术未来的发展方向。1、透过DeepSeekR1,看大模型技术的发展趋势今天我将从宏观角度为大家介绍DeepSeekR1所代表的大规模强化学习技术,及其基本原
- DeepSeek正重构具身大模型和人形机器人赛道!
Robot251
重构机器人人工智能科技自动驾驶
中国人工智能公司DeepSeek(深度求索)以“低成本、高效率、强开放”的研发范式横空出世,火遍并震撼全球科技圈;DeepSeek展现出来的核心竞争力,除了低成本及推理能力,更重要的是开源模型能力追赶上了最新的闭源模型;而对具身智能领域影响最大的当属于其开源大模型DeepSeek-R1。2024年1月20日,公司发布全球首个完全通过强化学习训练的专注于推理任务的高性能语言模型DeepSeek-R1
- DeepSeek-R1-Zero 与 DeepSeek-R1 的异同与优劣分析
AI生成曾小健
Deepseek原理与使用人工智能
DeepSeek-R1-Zero与DeepSeek-R1的异同与优劣分析一、相同点核心训练方法:两者均基于强化学习(RL),采用GroupRelativePolicyOptimization(GRPO)算法,通过组内样本的奖励相对比较优化策略模型。目标均为提升语言模型的复杂推理能力(如数学、代码、科学推理)。基础模型:均以DeepSeek-V3-Base作为初始模型,共享相同的架构
- 《深度Q网络优化:突破高维连续状态空间的束缚》
人工智能深度学习
在人工智能的发展历程中,深度Q网络(DQN)作为强化学习与深度学习融合的关键成果,为解决复杂决策问题开辟了新路径。但当面对高维连续状态空间时,DQN会出现训练不稳定、收敛速度慢等问题,严重限制了其应用范围。如何优化DQN以适应高维连续状态空间,成为当下研究的热点。深度Q网络基础回顾深度Q网络结合了深度学习强大的特征提取能力与Q学习的决策优化思想。在传统强化学习中,Q学习通过Q表记录每个状态-动作对
- DQN的原理和代码实现
SmallerFL
NLP&机器学习DQN强化学习深度学习
文章目录1.概述2.DQN的训练步骤2.1初始化2.2训练循环2.3终止条件2.4评估3.代码示例1.概述深度Q网络(DeepQ-Network,DQN)是强化学习中的一种重要算法,由GoogleDeepMind于2013年提出。DQN结合了Q学习和深度学习,通过使用神经网络来近似Q值函数,解决了传统Q学习在高维状态空间中的问题。2.DQN的训练步骤2.1初始化环境:定义环境(例如,Atari游戏
- DQN原理和代码实现
KPer_Yang
机器学习机器学习人工智能
参考:王树森《强化学习》书籍、课程、代码1、基本概念折扣回报:Ut=Rt+γ⋅Rt+1+γ2⋅Rt+2+⋯+γn−t⋅Rn.U_t=R_t+\gamma\cdotR_{t+1}+\gamma^2\cdotR_{t+2}+\cdots+\gamma^{n-t}\cdotR_n.Ut=Rt+γ⋅Rt+1+γ2⋅Rt+2+⋯+γn−t⋅Rn.动作价值函数:Qπ(st,at)=E[Ut∣St=st,At=
- 强化学习在机器人控制中的应用:从理论到实践
Echo_Wish
前沿技术人工智能机器人
强化学习在机器人控制中的应用:从理论到实践大家好,我是你们熟悉的人工智能与Python领域自媒体创作者Echo_Wish。今天我们来聊聊一个炙手可热的话题——强化学习在机器人控制中的应用。近年来,随着人工智能技术的飞速发展,机器人在各个领域的应用越来越广泛。而强化学习作为一种重要的机器学习方法,为机器人控制提供了强有力的技术支持。接下来,让我们一起探讨强化学习在机器人控制中的原理和实践,并通过具体
- X-R1 项目代码文件的详细剖析并精读rewards、grpo、x_grpo_trainer(src/x_r1)
仙人掌_lz
人工智能人工智能深度学习学习
这个项目名为[X-R1](https://github.com/dhcode-cpp/X-R1),是一个基于强化学习的训练框架,旨在构建一个易于使用、低成本的训练框架,以加速ScalingPost-Training的开发。以下是对该项目的详细解释:项目结构项目的主要目录结构如下:X-R1/├──.gitignore├──LICENSE├──Makefile├──README.md├──requir
- Python深度学习代做目标检测NLP计算机视觉强化学习
matlabgoodboy
计算机视觉python深度学习
了解您的需求,您似乎在寻找关于Python深度学习领域的代做服务,特别是在目标检测、自然语言处理(NLP)、计算机视觉以及强化学习方面。以下是一些关于这些领域的概述以及寻找相关服务的建议。1.Python深度学习代做概述目标检测:目标检测是计算机视觉中的一个重要任务,旨在识别图像或视频中的特定对象,并确定它们的位置。Python中的深度学习框架(如TensorFlow、PyTorch)和计算机视觉
- Bengio新作Aaren:探索Transformer性能与RNN效率的融合
AI记忆
深度学习论文与相关应用transformerrnn深度学习AarenBengio
论文链接:https://arxiv.org/pdf/2405.13956一、摘要总结:本文提出了一种新的注意力机制,名为Aaren,它将注意力视为一种特殊的递归神经网络(RNN),能够高效地计算其多对一RNN输出。Aaren不仅能够并行训练,而且能够在推理时高效地更新新令牌,仅需要常数内存。实验表明,Aaren在四个流行的序列问题设置(强化学习、事件预测、时间序列分类和时间序列预测)的38个数据
- 先进制造aps专题二十九 基于ai智能体的生产排程和工厂生产仿真引擎的设计
lijianhua_9712
apsai智能体仿真引擎
上文中,我们说,通常的做法是,可以先通过排产仿真引擎产生生产计划,再在工厂仿真引擎里仿真执行,这样可以预先分析计划和执行的差异情况并进行调整优化这里的产生生产计划,仿真生产执行和数据分析都是人工进行的这些工作可以让ai智能体来做,从而实现整套流程的自动化和智能化我们可以在强化学习框架中结合排产仿真/工厂生产仿真框架,在强化学习框架的准备函数里启动排产仿真引擎获得生产计划,并导入到工厂仿真引擎里执行
- DeepSeek R1:引领未来教育革命的自适应学习路径规划系统
Coderabo
DeepSeekR1模型企业级应用学习人工智能机器学习算法python深度学习
自适应学习路径规划概述自适应学习路径规划是指通过分析用户的学习行为和需求,动态调整学习内容和顺序,以提供个性化、高效的学习体验。在当今快速发展的教育科技领域,这一概念变得尤为重要。随着人工智能技术的进步,特别是深度学习和强化学习的应用,我们能够更加精准地识别学习者的需求,并据此设计出最适合他们的学习路径。利用先进的算法和模型来实现对学习路径的智能化管理。该系统能够实时监控学习者的进度,根据其表现调
- Deepseek背后的强化学习RL入门理解和Python脚本实现
大F的智能小课
人工智能
强化学习简单原理强化学习是一种让智能体通过与环境的交互来学习最优行为策略的方法。想象一下,你有一只小狗,你想让它学会自己找到回家的路。你可以给小狗一些奖励(比如小零食),当它做出正确的动作(比如向家的方向走)时,就给它奖励;当它走错方向时,就不给奖励。小狗会逐渐学会哪些动作能获得奖励,从而找到回家的路。强化学习中的智能体就像是这只小狗,环境就是小狗所处的世界,奖励就是你给它的零食。在强化学习中,智
- DeepSeek正重构人形机器人和具身大模型赛道!
Robot251
重构机器人人工智能科技大数据自动驾驶
中国人工智能公司DeepSeek(深度求索)以“低成本、高效率、强开放”的研发范式横空出世,火遍并震撼全球科技圈;DeepSeek展现出来的核心竞争力,除了低成本及推理能力,更重要的是开源模型能力追赶上了最新的闭源模型;而对具身智能领域影响最大的当属于其开源大模型DeepSeek-R1。2024年1月20日,公司发布全球首个完全通过强化学习训练的专注于推理任务的高性能语言模型DeepSeek-R1
- 【AI论文】使用大型推理模型进行竞技编程
东临碣石82
人工智能
摘要:我们的研究表明,将强化学习应用于大型语言模型(LLMs)能显著提升复杂编码和推理任务的性能。此外,我们将两个通用推理模型——OpenAI的o1模型和o3模型的一个早期检查点——与一个特定领域的系统o1-ioi进行了比较。o1-ioi采用了为参加2024年国际信息学奥林匹克竞赛(IOI)而手工设计的推理策略。我们使用o1-ioi实时参加了2024年IOI竞赛,并凭借手工制定的测试时策略取得了第
- 【必看】凭啥?DeepSeek如何用1/179的训练成本干到GPT-4o 98%性能
大F的智能小课
人工智能算法
一、DeepSeek降低训练成本的核心方法1.1创新训练方法DeepSeek通过独特的训练方案显著降低了训练成本。其核心策略包括减少监督微调(SFT)步骤,仅依赖强化学习(RL)技术。DeepSeek-R1-Zero版本完全跳过SFT,仅通过RL进行训练。尽管初期计算开销较大,但添加少量冷启动数据后,训练稳定性和模型推理能力大幅提升。此外,DeepSeek还采用了组相对策略优化(GRPO)算法替代
- 书籍-《强化学习数学基础》
强化学习数学人工智能
书籍:MathematicalFoundationsofReinforcementLearning作者:赵世钰出版:Springer编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《强化学习数学基础》01书籍介绍本书对基本概念、核心挑战和经典强化学习算法进行了数学但易于理解的介绍。它旨在帮助读者理解算法的理论基础,提供对其设计和功能的见解。整个过程中包括许多说明性示例。数学内容经过精心设计,以
- 强化学习算法:蒙特卡洛树搜索 (Monte Carlo Tree Search) 原理与代码实例讲解
杭州大厂Java程序媛
DeepSeekR1&AI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能
强化学习算法:蒙特卡洛树搜索(MonteCarloTreeSearch)原理与代码实例讲解关键词:蒙特卡洛树搜索,强化学习,决策树,搜索算法,博弈策略,应用场景,代码实现1.背景介绍1.1问题由来强化学习(ReinforcementLearning,RL)是人工智能领域的一个核心分支,专注于通过与环境交互,学习最优策略以实现特定目标。传统的强化学习算法,如Q-learning、SARSA等,通常依
- 普惠AI 如何在 Anolis OS 8 上部署生产可用的 DeepSeek 推理服务
操作系统人工智能开源
背景介绍DeepSeek-R1DeepSeek-R1在后训练阶段大规模使用了强化学习技术,在仅有极少标注数据的情况下,极大提升了模型推理能力。在数学、代码、自然语言推理等任务上,性能比肩OpenAIo1正式版。DeepSeek-R1-Distill-Qwen则是通过DeepSeek-R1的输出,基于Qwen大语言模型,经过模型蒸馏的小模型,其中32B和70B模型在多项能力上实现了对标OpenAIo
- 手把手教学,DeepSeek-R1微调全流程拆解
AI生成曾小健
windows
手把手教学,DeepSeek-R1微调全流程拆解原创极客见识GeekSavvy2025年02月09日09:02广东DeepSeek通过发布其开源推理模型DeepSeek-R1颠覆了AI格局,该模型使用创新的强化学习技术,以极低的成本提供与OpenAI的o1相当的性能。更令人印象深刻的是,DeepSeek已将其推理能力提炼成几个较小的模型。这篇文章,我们将使用其蒸馏版本之一引导大家完成DeepSee
- 对DeepSeek-R1通过强化学习提升大型语言模型推理能力的技术原理解析
一只贴代码君
语言模型人工智能自然语言处理学习AI编程开发语言
强化学习基础•基本概念:强化学习是一种机器学习方法,智能体(模型)通过与环境进行交互,根据环境反馈的奖励信号来学习最优的行为策略。•关键要素:包括环境(模型所处的推理任务场景)、状态(模型在推理过程中的当前情况,如已有的推理步骤、已知信息等)、动作(模型在当前状态下做出的推理决策,如选择何种推理方法、如何组织语言等)、奖励(根据模型的动作和结果给予的反馈,如推理正确给予正奖励,错误给予负奖励或无奖
- 【专题】DeepSeek颠覆性在于实现AI平权、惊艳世界,算力与应用将迎来结构性变化报告汇总PDF洞察(附原数据表)
数据挖掘深度学习机器学习算法
全文链接:https://tecdat.cn/?p=39811在如今科技飞速发展的时代,人工智能对全球产业格局的重塑起着关键作用。DeepSeek-R1的出现是个大事件,它在技术创新方面,通过独特的强化学习与蒸馏技术,在性能上逼近国际领先模型。文末682份DeepSeek、大模型、AI行业研究报告最新趋势已分享在交流群,阅读原文进群和500+行业人士共同交流和成长。同时,它的训练和使用成本大幅降低
- DeepSeek R1 简易指南:架构、本地部署和硬件要求
deepseek
从DeepSeek-R1-Zero到DeepSeek-R1,代表了研究中的一个重要学习历程。DeepSeek-R1-Zero证明了纯粹的强化学习是可行的,而DeepSeek-R1则展示了如何将监督学习与强化学习相结合,从而创建出能力更强、更实用的模型。DeepSeek团队近期发布的DeepSeek-R1技术论文展示了其在增强大语言模型推理能力方面的创新实践。该研究突破性地采用强化学习(Reinfo
- 『大模型笔记』国外大神对DeepSeek R1的科普!
AI大模型前沿研究
大模型笔记笔记DeepseekdeepseekR1Deepseekv3GPTO1GPTO3
国外大神对DeepSeekR1的科普!文章目录一、Explainer:What'sR1&EverythingElse?时间线推理与Agent推理模型≠Agent推理为什么重要推理需要变得廉价R1的重要意义AI的发展走势预训练规模扩张的路走不通了推理阶段的规模定律缩小模型体量(新的规模定律?)强化学习(新的规模定律?)模型蒸馏(新的规模定律?)2025年的预测地缘政治:Distealing结论讨论二
- 从零开始:用Python手写神经网络
WHCIS
python神经网络开发语言人工智能深度学习算法
在当今的人工智能领域,神经网络已经成为解决复杂问题的核心技术之一。从图像识别到自然语言处理,再到强化学习,神经网络的身影无处不在。然而,对于许多初学者来说,神经网络似乎是一个神秘而复杂的黑盒子。本文将带你用基础的Python代码构建一个简单的神经网络,揭开它的神秘面纱,让你真正理解神经网络的工作原理。一、神经网络的基本原理在深入了解代码之前,我们需要先回顾一下神经网络的基本原理。神经网络是由大量的
- AI分支知识之机器学习,深度学习,强化学习的关系
王钧石的技术博客
大模型人工智能机器学习深度学习
机器学习,深度学习,强化学习的关系这一篇文章我们来探讨下AI领域中机器学习(ML)、深度学习(DL)和强化学习(RL)的关系。一、机器学习(ML):从数据中找到模式核心思想:给定大量数据,计算机从数据中总结规律,形成一个数学模型,然后用这个模型去处理新的数据。例子:判断一封邮件是垃圾邮件还是正常邮件传统编程方式:人类自己写规则,比如:如果邮件标题包含“中奖”、“免费”、“转账”→这是垃圾邮件否则这
- 强化学习关键技术:重要性采样深度剖析
进一步有进一步的欢喜
强化学习概率论机器学习人工智能重要性采样
目录一、引言二、重要性采样基本原理(一)什么是重要性采样(二)重要性采样在强化学习中的作用三、判断采样好坏的方法(一)偏差(Bias)(二)方差(Variance)(三)有效样本数量(EffectiveSampleSize)(四)与真实值对比(如果已知)四、重要性采样公式推导五、代码示例六、案例分析(一)机器人路径规划(二)游戏AI七、总结一、引言强化学习旨在让智能体在与环境的交互中学习到最优策略
- DeepSeek R1为什么能
森焱森
人工智能算法
#*********************************************#DeepSeekR1的创新点在于它通过自我探索和试错来学习,而不是依赖别人给的标准答案,这不仅节省了成本,还让模型变得更聪明、更灵活。DeepSeekR1模仿人类思考方式的核心在于其纯强化学习训练方式,这种方式更接近人类通过试错和反馈来学习的过程。与GPT等传统模型依赖大量标注数据进行监督学习不同,Dee
- 大模型入门(六)—— RLHF微调大模型
LLM.
人工智能语言模型机器学习自然语言处理LLM大模型RLHF
一、RLHF微调三阶段参考:https://huggingface.co/blog/rlhf1)使用监督数据微调语言模型,和fine-tuning一致。2)训练奖励模型奖励模型是输入一个文本序列,模型给出符合人类偏好的奖励数值,这个奖励数值对于后面的强化学习训练非常重要。构建奖励模型的训练数据一般是同一个数据用不同的语言模型生成结果,然后人工打分。如果是训练自己领域的RLHF模型,也可以尝试用ch
- 汽车自动驾驶AI
pps-key
人工智能汽车自动驾驶
汽车自动驾驶AI是当前汽车技术领域的前沿方向,以下是关于汽车自动驾驶AI的详细介绍:技术原理感知系统:自动驾驶汽车通过多种传感器(如激光雷达、摄像头、雷达、超声波传感器等)收集周围环境的信息。AI算法对这些传感器数据进行融合处理,构建精确的3D环境模型,使车辆能够“看懂”周围环境,识别行人、车辆、交通标志等。决策系统:基于感知数据,AI通过深度学习、强化学习等算法进行路径规划和决策控制。例如,利用
- Java 并发包之线程池和原子计数
lijingyao8206
Java计数ThreadPool并发包java线程池
对于大数据量关联的业务处理逻辑,比较直接的想法就是用JDK提供的并发包去解决多线程情况下的业务数据处理。线程池可以提供很好的管理线程的方式,并且可以提高线程利用率,并发包中的原子计数在多线程的情况下可以让我们避免去写一些同步代码。
这里就先把jdk并发包中的线程池处理器ThreadPoolExecutor 以原子计数类AomicInteger 和倒数计时锁C
- java编程思想 抽象类和接口
百合不是茶
java抽象类接口
接口c++对接口和内部类只有简介的支持,但在java中有队这些类的直接支持
1 ,抽象类 : 如果一个类包含一个或多个抽象方法,该类必须限定为抽象类(否者编译器报错)
抽象方法 : 在方法中仅有声明而没有方法体
package com.wj.Interface;
- [房地产与大数据]房地产数据挖掘系统
comsci
数据挖掘
随着一个关键核心技术的突破,我们已经是独立自主的开发某些先进模块,但是要完全实现,还需要一定的时间...
所以,除了代码工作以外,我们还需要关心一下非技术领域的事件..比如说房地产
&nb
- 数组队列总结
沐刃青蛟
数组队列
数组队列是一种大小可以改变,类型没有定死的类似数组的工具。不过与数组相比,它更具有灵活性。因为它不但不用担心越界问题,而且因为泛型(类似c++中模板的东西)的存在而支持各种类型。
以下是数组队列的功能实现代码:
import List.Student;
public class
- Oracle存储过程无法编译的解决方法
IT独行者
oracle存储过程
今天同事修改Oracle存储过程又导致2个过程无法被编译,流程规范上的东西,Dave 这里不多说,看看怎么解决问题。
1. 查看无效对象
XEZF@xezf(qs-xezf-db1)> select object_name,object_type,status from all_objects where status='IN
- 重装系统之后oracle恢复
文强chu
oracle
前几天正在使用电脑,没有暂停oracle的各种服务。
突然win8.1系统奔溃,无法修复,开机时系统 提示正在搜集错误信息,然后再开机,再提示的无限循环中。
无耐我拿出系统u盘 准备重装系统,没想到竟然无法从u盘引导成功。
晚上到外面早了一家修电脑店,让人家给装了个系统,并且那哥们在我没反应过来的时候,
直接把我的c盘给格式化了 并且清理了注册表,再装系统。
然后的结果就是我的oracl
- python学习二( 一些基础语法)
小桔子
pthon基础语法
紧接着把!昨天没看继续看django 官方教程,学了下python的基本语法 与c类语言还是有些小差别:
1.ptyhon的源文件以UTF-8编码格式
2.
/ 除 结果浮点型
// 除 结果整形
% 除 取余数
* 乘
** 乘方 eg 5**2 结果是5的2次方25
_&
- svn 常用命令
aichenglong
SVN版本回退
1 svn回退版本
1)在window中选择log,根据想要回退的内容,选择revert this version或revert chanages from this version
两者的区别:
revert this version:表示回退到当前版本(该版本后的版本全部作废)
revert chanages from this versio
- 某小公司面试归来
alafqq
面试
先填单子,还要写笔试题,我以时间为急,拒绝了它。。时间宝贵。
老拿这些对付毕业生的东东来吓唬我。。
面试官很刁难,问了几个问题,记录下;
1,包的范围。。。public,private,protect. --悲剧了
2,hashcode方法和equals方法的区别。谁覆盖谁.结果,他说我说反了。
3,最恶心的一道题,抽象类继承抽象类吗?(察,一般它都是被继承的啊)
4,stru
- 动态数组的存储速度比较 集合框架
百合不是茶
集合框架
集合框架:
自定义数据结构(增删改查等)
package 数组;
/**
* 创建动态数组
* @author 百合
*
*/
public class ArrayDemo{
//定义一个数组来存放数据
String[] src = new String[0];
/**
* 增加元素加入容器
* @param s要加入容器
- 用JS实现一个JS对象,对象里有两个属性一个方法
bijian1013
js对象
<html>
<head>
</head>
<body>
用js代码实现一个js对象,对象里有两个属性,一个方法
</body>
<script>
var obj={a:'1234567',b:'bbbbbbbbbb',c:function(x){
- 探索JUnit4扩展:使用Rule
bijian1013
java单元测试JUnitRule
在上一篇文章中,讨论了使用Runner扩展JUnit4的方式,即直接修改Test Runner的实现(BlockJUnit4ClassRunner)。但这种方法显然不便于灵活地添加或删除扩展功能。下面将使用JUnit4.7才开始引入的扩展方式——Rule来实现相同的扩展功能。
1. Rule
&n
- [Gson一]非泛型POJO对象的反序列化
bit1129
POJO
当要将JSON数据串反序列化自身为非泛型的POJO时,使用Gson.fromJson(String, Class)方法。自身为非泛型的POJO的包括两种:
1. POJO对象不包含任何泛型的字段
2. POJO对象包含泛型字段,例如泛型集合或者泛型类
Data类 a.不是泛型类, b.Data中的集合List和Map都是泛型的 c.Data中不包含其它的POJO
 
- 【Kakfa五】Kafka Producer和Consumer基本使用
bit1129
kafka
0.Kafka服务器的配置
一个Broker,
一个Topic
Topic中只有一个Partition() 1. Producer:
package kafka.examples.producers;
import kafka.producer.KeyedMessage;
import kafka.javaapi.producer.Producer;
impor
- lsyncd实时同步搭建指南——取代rsync+inotify
ronin47
1. 几大实时同步工具比较 1.1 inotify + rsync
最近一直在寻求生产服务服务器上的同步替代方案,原先使用的是 inotify + rsync,但随着文件数量的增大到100W+,目录下的文件列表就达20M,在网络状况不佳或者限速的情况下,变更的文件可能10来个才几M,却因此要发送的文件列表就达20M,严重减低的带宽的使用效率以及同步效率;更为要紧的是,加入inotify
- java-9. 判断整数序列是不是二元查找树的后序遍历结果
bylijinnan
java
public class IsBinTreePostTraverse{
static boolean isBSTPostOrder(int[] a){
if(a==null){
return false;
}
/*1.只有一个结点时,肯定是查找树
*2.只有两个结点时,肯定是查找树。例如{5,6}对应的BST是 6 {6,5}对应的BST是
- MySQL的sum函数返回的类型
bylijinnan
javaspringsqlmysqljdbc
今天项目切换数据库时,出错
访问数据库的代码大概是这样:
String sql = "select sum(number) as sumNumberOfOneDay from tableName";
List<Map> rows = getJdbcTemplate().queryForList(sql);
for (Map row : rows
- java设计模式之单例模式
chicony
java设计模式
在阎宏博士的《JAVA与模式》一书中开头是这样描述单例模式的:
作为对象的创建模式,单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例。这个类称为单例类。 单例模式的结构
单例模式的特点:
单例类只能有一个实例。
单例类必须自己创建自己的唯一实例。
单例类必须给所有其他对象提供这一实例。
饿汉式单例类
publ
- javascript取当月最后一天
ctrain
JavaScript
<!--javascript取当月最后一天-->
<script language=javascript>
var current = new Date();
var year = current.getYear();
var month = current.getMonth();
showMonthLastDay(year, mont
- linux tune2fs命令详解
daizj
linuxtune2fs查看系统文件块信息
一.简介:
tune2fs是调整和查看ext2/ext3文件系统的文件系统参数,Windows下面如果出现意外断电死机情况,下次开机一般都会出现系统自检。Linux系统下面也有文件系统自检,而且是可以通过tune2fs命令,自行定义自检周期及方式。
二.用法:
Usage: tune2fs [-c max_mounts_count] [-e errors_behavior] [-g grou
- 做有中国特色的程序员
dcj3sjt126com
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有
- Android:TextView属性大全
dcj3sjt126com
textview
android:autoLink 设置是否当文本为URL链接/email/电话号码/map时,文本显示为可点击的链接。可选值(none/web/email/phone/map/all) android:autoText 如果设置,将自动执行输入值的拼写纠正。此处无效果,在显示输入法并输
- tomcat虚拟目录安装及其配置
eksliang
tomcat配置说明tomca部署web应用tomcat虚拟目录安装
转载请出自出处:http://eksliang.iteye.com/blog/2097184
1.-------------------------------------------tomcat 目录结构
config:存放tomcat的配置文件
temp :存放tomcat跑起来后存放临时文件用的
work : 当第一次访问应用中的jsp
- 浅谈:APP有哪些常被黑客利用的安全漏洞
gg163
APP
首先,说到APP的安全漏洞,身为程序猿的大家应该不陌生;如果抛开安卓自身开源的问题的话,其主要产生的原因就是开发过程中疏忽或者代码不严谨引起的。但这些责任也不能怪在程序猿头上,有时会因为BOSS时间催得紧等很多可观原因。由国内移动应用安全检测团队爱内测(ineice.com)的CTO给我们浅谈关于Android 系统的开源设计以及生态环境。
1. 应用反编译漏洞:APK 包非常容易被反编译成可读
- C#根据网址生成静态页面
hvt
Web.netC#asp.nethovertree
HoverTree开源项目中HoverTreeWeb.HVTPanel的Index.aspx文件是后台管理的首页。包含生成留言板首页,以及显示用户名,退出等功能。根据网址生成页面的方法:
bool CreateHtmlFile(string url, string path)
{
//http://keleyi.com/a/bjae/3d10wfax.htm
stri
- SVG 教程 (一)
天梯梦
svg
SVG 简介
SVG 是使用 XML 来描述二维图形和绘图程序的语言。 学习之前应具备的基础知识:
继续学习之前,你应该对以下内容有基本的了解:
HTML
XML 基础
如果希望首先学习这些内容,请在本站的首页选择相应的教程。 什么是SVG?
SVG 指可伸缩矢量图形 (Scalable Vector Graphics)
SVG 用来定义用于网络的基于矢量
- 一个简单的java栈
luyulong
java数据结构栈
public class MyStack {
private long[] arr;
private int top;
public MyStack() {
arr = new long[10];
top = -1;
}
public MyStack(int maxsize) {
arr = new long[maxsize];
top
- 基础数据结构和算法八:Binary search
sunwinner
AlgorithmBinary search
Binary search needs an ordered array so that it can use array indexing to dramatically reduce the number of compares required for each search, using the classic and venerable binary search algori
- 12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
刘星宇
c面试
12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
1.gets()函数
问:请找出下面代码里的问题:
#include<stdio.h>
int main(void)
{
char buff[10];
memset(buff,0,sizeof(buff));
- ITeye 7月技术图书有奖试读获奖名单公布
ITeye管理员
活动ITeye试读
ITeye携手人民邮电出版社图灵教育共同举办的7月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
7月试读活动回顾:
http://webmaster.iteye.com/blog/2092746
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《Java性能优化权威指南》