- Python(PyTorch)和MATLAB及Rust和C++结构相似度指数测量导图
亚图跨际
Python交叉知识算法量化检查图像压缩质量低分辨率多光谱峰值信噪比端到端优化图像压缩手术机器人三维实景实时可微分渲染重建三维可视化
要点量化检查图像压缩质量低分辨率多光谱和高分辨率图像实现超分辨率分析图像质量图像索引/多尺度结构相似度指数和光谱角映射器及视觉信息保真度多种指标峰值信噪比和结构相似度指数测量结构相似性图像分类PNG和JPEG图像相似性近似算法图像压缩,视频压缩、端到端优化图像压缩、神经图像压缩、GPU变速图像压缩手术机器人深度估计算法重建三维可视化推理图像超分辨率算法模型三维实景实时可微分渲染算法MATLAB结构
- ESRGAN——老旧照片、视频帧的修复和增强,提高图像的分辨率
爱研究的小牛
AIGC——图像AIGC—视频AIGC人工智能深度学习音视频自动化
ESRGAN(EnhancedSuper-ResolutionGAN):用于提高图像的分辨率,将低质量图像升级为高分辨率版本,常用于老旧照片、视频帧的修复和增强。一、ESRGAN介绍1.1背景超分辨率问题是计算机视觉中的一个重要研究领域,其目标是通过增加像素数量来提高图像的分辨率,恢复出更加细腻的图像。传统的算法(如双三次插值)通常导致放大后的图像模糊、不自然。而深度学习特别是**生成对抗网络(G
- stable diffusion和GAN网络的区别,优点缺点是什么
爱好很多的算法工程师
SD大模型AIGC笔记
稳定扩散(stablediffusion)和生成对抗网络(GAN)是两种不同的深度学习方法。稳定扩散是一种无监督学习方法,用于图像超分辨率重建。它基于扩散过程模型,通过在不同的时间步骤中对图像进行重建来增加分辨率。该方法能够有效地增加图像的细节,并产生更高质量的图像。其优点包括:无监督学习:稳定扩散不需要使用任何带标签的训练数据,因此可以用于无监督任务。高分辨率重建:稳定扩散能够通过迭代过程逐渐增
- (condition instance batchnorm)A LEARNED REPRESENTATION FOR ARTISTIC STYLE
水球喵
分享一个不错的对batchnorm的解释https://blog.csdn.net/aichipmunk/article/details/54234646.作者提到:BatchNorm会忽略图像像素(或者特征)之间的绝对差异(因为均值归零,方差归一),instancenorm也是一样的,他们只考虑相对差异,所以在不需要绝对差异的任务中(比如分类、风格),有锦上添花的效果。而对于图像超分辨率这种需要
- Stable Diffusion系列(六):原理剖析——从文字到图片的神奇魔法(潜空间篇)
羊城迷鹿
多模态模型stablediffusionlatent潜空间论文
文章目录LDM概述原理模型架构自编码器模型扩散模型条件引导模型图像生成过程实验结果指标定义IS(越大越好)FID(越小越好)训练成本与采样质量分析不带条件的图片生成基于文本的图片生成基于语义框的图片生成基于语义图的图片生成超分辨率图像生成图像重绘其他文生图模型DALL-EImagen在上一章,我们了解了扩散模型的基本原理,但它离实现StableDiffusion的文生图或图生图功能显然还有一段距离
- ESRGAN:基于GAN的增强超分辨率方法(附代码解析)
PaperWeekly
作者丨左育莘学校丨西安电子科技大学研究方向丨计算机视觉之前看的文章里有提到GAN在图像修复时更容易得到符合视觉上效果更好的图像,所以也是看了一些结合GAN的图像修复工作。ESRGAN:EnhancedSuper-ResolutionGenerativeAdversarialNetworks发表于ECCV2018的Workshops,作者在SRGAN的基础上进行了改进,包括改进网络的结构、判决器的判
- [超分辨率重建]ESRGAN算法训练自己的数据集过程
Cr_南猫
超分辨率重建超分辨率重建人工智能深度学习
一、下载数据集及项目包1.数据集1.1文件夹框架的介绍,如下图所示:主要有train和val,分别有高清(HR)和低清(LR)的图像。1.2原图先通过分割尺寸的脚本先将数据集图片处理成两个相同的图像组(HR和LR)。如训练x4的ESRGAN模型,那么我们需要将HR的图像尺寸与LR的图像尺寸比例是4:1。在我的训练中,我将HR的图像尺寸分割成了480x480,LR的图像分割成了120x120。如下图
- 第十八篇【传奇开心果短博文系列】Python的OpenCV库技术点案例示例:图像修复和恢复
传奇开心果编程
Python库OpenCV技术点案例示例短博文pythonopencv计算机视觉人工智能
传奇开心果短博文系列系列短博文目录Python的OpenCV库技术点案例示例系列短博文目录前言一、常用的图像修复与恢复技术二、插值方法示例代码三、基于纹理合成的方法示例代码四、基于边缘保持的方法示例代码五、基于图像修复模型的方法示例代码六、基于深度学习的方法示例代码七、基于结构化边缘的方法示例代码八、基于多帧图像的方法示例代码九、基于超分辨率的方法示例代码十、cv2.inpaint()函数修复图像
- 【深度学习】实验7实验结果,图像超分辨
X.AI666
深度学习深度学习人工智能
代码和报告均为本人自己实现(实验满分),只展示主要任务实验结果,如果需要详细的实验报告或者代码可以私聊博主,接实验技术指导1对1实验要求布置请看http://t.csdnimg.cn/jCsv6Model实现说明代码实现了一个基于生成对抗网络(SRGAN)的图像超分辨率模型。总体来说,SRGAN由两个主要组件组成:生成器(Generator)和判别器(Discriminator),它们相互对抗并共
- YOLOv8改进 | 检测头篇 | 独创RFAHead检测头超分辨率重构检测头(适用Pose、分割、目标检测)
Snu77
YOLOv8有效涨点专栏YOLO目标检测人工智能深度学习计算机视觉pythonPytorch
一、本文介绍本文给大家带来的改进机制是RFAHead,该检测头为我独家全网首发,本文主要利用将空间注意力机制与卷积操作相结合的卷积RFAConv来优化检测头,其核心在于优化卷积核的工作方式,特别是在处理感受野内的空间特征时。RFAConv主要的优点就是增加模型的特征提取能力,这对于对于那些数据集中有困难识别的样本来说是非常有效的解决方法,同时本文的检测头结构为我本人独家提出,全网仅此一份,结构非常
- ESRGAN:基于GAN的增强超分辨率方法(附代码解析)
无止境x
SuperResolution(超分辨)ESRGAN
之前看的文章里有提到GAN在图像修复时更容易得到符合视觉上效果更好的图像,所以也是看了一些结合GAN的图像修复工作。ESRGAN:EnhancedSuper-ResolutionGenerativeAdversarialNetworks发表于ECCV2018的Workshops,作者在SRGAN的基础上进行了改进,包括改进网络的结构、判决器的判决形式,以及更换了一个用于计算感知域损失的预训练网络。
- 一种通过增强的面部边界实现精确面部表示的多级人脸超分辨率
qq_43314576
人工智能机器学习深度学习
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录摘要Abstract文献阅读:一种通过增强的面部边界实现精确面部表示的多级人脸超分辨率二、使用步骤1、研究背景2、方法提出3、相关方法3.1、FSR网络结构3.2、多阶段FSR网络结构4、实验工作5、方法比较LSTM代码学习2.1、什么是LSTM2.2、LSTM的处理过程2.3、LSTM代码分析总结摘要本周主要阅读了2020C
- (2021|NIPS,VQ-VAE,精度瓶颈松弛,三明治层归一化,CapLoss)CogView:通过转换器掌握文本到图像的生成
EDPJ
论文笔记transformer深度学习人工智能
CogView:MasteringText-to-ImageGenerationviaTransformers公众号:EDPJ(添加VX:CV_EDPJ或直接进Q交流群:922230617获取资料)目录0.摘要1.简介2.方法2.1理论2.2标记化2.3自回归Transformer2.4训练的稳定性3.微调3.1超分辨率3.2图像标题和自我重新排名3.3风格学习3.4工业时尚设计4.实验结果4.1
- 论文阅读《SGNet: Structure Guided Network via Gradient-Frequency Awareness for Depth Map Super-Resolutio》
CV科研随想录
CV顶会(刊)论文阅读论文阅读
论文地址:https://arxiv.org/pdf/2312.05799v1.pdf源码地址:https://github.com/yanzq95/SGNet概述 深度图的图像引导超分辨率在各个领域有着广泛的应用。但是,复杂的成像环境会导致深度图的结构边缘变得模糊。如图2所示,从梯度图可以看出,它能够很好地表现出图像的结构信息。从频谱图可以看出,高分辨率的深度图和RGB图像都包含了丰富的高频和
- 文本生成高清、连贯视频,谷歌推出时空扩散模型
RPA中国
音视频人工智能
谷歌研究人员推出了创新性文本生成视频模型——Lumiere。与传统模型不同的是,Lumiere采用了一种时空扩散(Space-time)U-Net架构,可以在单次推理中生成整个视频的所有时间段,能明显增强生成视频的动作连贯性,并大幅度提升时间的一致性。此外,Lumiere为了解决空间超分辨率级联模块,在整个视频的内存需求过大的难题,使用了Multidiffusion方法,同时可以对生成的视频质量、
- HiNet阅读笔记
小杨小杨1
#全监督计算机视觉人工智能深度学习
HINet:HalfInstanceNormalizationNetworkforImageRestoration摘要提出了一种新的block:半实例归一化块(HINblock)图像恢复任务sota一些效果展示引言批处理归一化不能提高超分辨率网络的性能批归一化消除了网络的范围灵活性图像恢复任务通常使用小的图像patch和小的mini-batchsize来训练网络,这导致BN的统计不稳定。实例标准化
- ICCV 2023 超分辨率(super-resolution)方向上接收论文总结
yyywxk
ICCV2023官网链接:https://iccv2023.thecvf.com/会议时间:2023年10月2日至6日,法国巴黎(Paris)。ICCV2023统计数据:收录2160篇。现将超分辨率方向上接收的论文汇总如下,遗漏之处还请大家斧正。图像超分SRFormer:PermutedSelf-AttentionforSingleImageSuper-ResolutionPaper:http:/
- torch.utils.data.Dataset
syugyou
pytorchpython
文章目录torch.utils.data.Dataset结构示例超分辨率数据集bsd_300__getitem__()transformimagenet22k数据集__getitem__()RelatedLinkstorch.utils.data.Dataset表示一个数据集的抽象类,Map-style的数据集都应该是它的子类,并且重写__getitem__(),支持给定key值获取数据,重写__
- 紫光展锐M6780丨超分辨率技术——画质重构还原经典
紫光展锐官方
重构人工智能
上一期,我们揭秘了让画质更加炫彩的AI-PQ技术。面对分辨率较低的老电影,光有高饱和度的色彩是不够的,如何能够提高视频影像的分辨率,使画质更加清晰,实现老片新看?本期带大家揭晓紫光展锐首颗AI+8K超高清智能显示芯片平台M6780的第二项隐藏技能——AI-SR超分辨率技术。在图像、视频的显示过程中,视频源的输入尺寸取决于视频资源的实际尺寸,如果视频资源较为老旧,其分辨率普遍低于播放设备的显示分辨率
- 超分之SRGAN
深度学习炼丹师-CXD
超分SR计算机视觉人工智能深度学习超分辨率重建论文笔记
Photo-RealisticSingleImageSuper-ResolutionUsingaGenerativeAdversarialNetwork使用生成对抗网络的逼真单图像超分辨率一作:ChristianLedig是Twitter2017年的一篇论文。超分之SRGAN代码实现文章目录0.摘要1.引言1.1相关工作1.1.1介绍了SR技术的发展历程1.1.2介绍了SR技术中卷积神经网络的设计
- 超分之ESRGAN
深度学习炼丹师-CXD
超分SR深度学习计算机视觉超分辨率重建pytorch
Esrgan:增强型超分辨率生成对抗网络。Esrgan:Enhancedsuper-resolutiongenerativeadversarialnetworks.In:ECCVW.(2018)XintaoWang,KeYu,ShixiangWu,JinjinGu,YihaoLiu,ChaoDong,YuQiao,andChenChangeLoy.文章目录摘要一、引言二、相关工作三、Methods
- 卷积神经网络(CNN)
Array902
cnn人工智能神经网络
卷积神经网络主要就是应用于计算机视觉(CV)当中!可以做啥?检测任务:检测追踪分类与检索:分类看图像是啥,检索比如说淘宝里面识别一张图片得到类似商品超分辨率重构医学任务等无人驾驶人脸识别传统神经网络与卷积神经网络的区别卷积神经网络拿到一张图像直接进行处理,不需要将图像中的点拉成一维向量;整体架构卷积层:提取特征池化层:压缩特征卷积h*w*c上面的一块小区域的样本点矩阵:小区域处的权重矩阵:图像颜色
- ECCV 2022 超分辨率(super-resolution)方向上接收论文总结(持续更新)
yyywxk
ECCV2022除了著名的CVPR、ICCV,ECCV(欧洲计算机视觉国际会议)也是计算机视觉三大国际顶级会议之一,每两年召开一次。本届ECCV2022将在10月23日-27日的以色列特拉维夫(Tel-Aviv)举行,采取线下和线上混合形式召开[1]。而本届会议论文录用率不足20%。现将超分辨率方向上接收的论文汇总如下,遗漏之处还请大家斧正。图像超分CADyQ:Content-AwareDynam
- 基于深度学习的老黑白视频修复
OverlordDuke
深度学习GAN深度学习音视频人工智能视频修复
基于深度学习的老黑白视频修复PaddleGAN实现老北京黑白视频修复项目背景与意义安装PaddleGAN1.1准备工作1.2下载PaddleGAN代码1.3安装依赖导入依赖包2.1导入相关库2.2定义display函数展示旧影像3.1读取视频帧3.2获得帧率并显示视频修复4.1使用DAIN模型补帧4.2使用DeOldify模型进行上色4.3使用PPMSVSR模型实现视频的超分辨率展示结果Paddl
- Resemble Enhance音频失真损坏修复AI工具:一个开源语音超分辨率AI模型
喜好儿aigc
人工智能aigc科技机器人ai
ResembleEnhance是一款强大的音频处理工具,可以将嘈杂的录音转化为清晰而有力的声音,为用户提供更优质的听觉体验。这个工具不仅可以有效去除录音中的各种噪声和杂音,还能够恢复音频失真并扩展音频带宽,使原本的声音听起来更加清晰和自然。详细介绍:ResembleEnhance:OpenSourceSpeechSuperResolutionModelGitHub:https://github.c
- ESRGAN - Enhanced Super-Resolution Generative Adversarial Networks论文翻译——中文版
SnailTyan
文章作者:Tyan博客:noahsnail.com|CSDN|声明:作者翻译论文仅为学习,如有侵权请联系作者删除博文,谢谢!翻译论文汇总:https://github.com/SnailTyan/deep-learning-papers-translationESRGAN:EnhancedSuper-ResolutionGenerativeAdversarialNetworks摘要超分辨率生成对抗
- 【扩散模型】11、Stable Diffusion | 使用 Diffusers 库来看看 Stable Diffusion 的结构
呆呆的猫
stablediffusion
文章目录一、什么是StableDiffusion二、Diffusers库三、微调、引导、条件生成3.1微调3.2引导3.3条件生成四、StableDiffusion4.1以文本为条件生成4.2无分类器的引导4.3其它类型的条件生成:超分辨率、图像修补、深度图到图像的转换4.4使用DreamBooth微调五、使用Diffusers库来窥探StableDiffusion内部5.1StableDiffu
- 基于DL的人脸超分辨率(FSR)任务综述
多少学一点吧
FSR深度学习计算机视觉神经网络
一、任务描述从低分辨率的人脸图像中生成高分辨率的人脸图像。二、数据来源利用已有的高分辨率(HR)人脸图像,采用一些方法降低图像的分辨率,得到对应的低分辨率(LR)人脸图像。LR图像用于网络的训练,HR图像用于监督,网络生成的图片记为SR(superresolution),损失函数可以基于评估HR图像和SR图像之间的差异构建。三、常见的评价指标和损失函数1、评价指标:(1)PSNR(PeakSign
- 目标检测YOLO实战应用案例100讲-基于图像增强的鸟类目标检测(续)
林聪木
目标检测YOLO深度学习
目录SRGAN网络模型改进研究3.1SRGAN超分辨率模型3.1.1SRGAN网络结构3.1.2SRGAN的损失函数
- [C#]使用OpenCvSharp实现二维码图像增强超分辨率
FL1623863129
C#c#开发语言
【官方框架地址】github.com/shimat/opencvsharp【算法介绍】借助于opencv自带sr.prototxt和sr.caffemodel实现对二维码图像增强【效果展示】【实现部分代码】usingSystem;usingSystem.Collections.Generic;usingSystem.ComponentModel;usingSystem.Data;usingSyst
- mongodb3.03开启认证
21jhf
mongodb
下载了最新mongodb3.03版本,当使用--auth 参数命令行开启mongodb用户认证时遇到很多问题,现总结如下:
(百度上搜到的基本都是老版本的,看到db.addUser的就是,请忽略)
Windows下我做了一个bat文件,用来启动mongodb,命令行如下:
mongod --dbpath db\data --port 27017 --directoryperdb --logp
- 【Spark103】Task not serializable
bit1129
Serializable
Task not serializable是Spark开发过程最令人头疼的问题之一,这里记录下出现这个问题的两个实例,一个是自己遇到的,另一个是stackoverflow上看到。等有时间了再仔细探究出现Task not serialiazable的各种原因以及出现问题后如何快速定位问题的所在,至少目前阶段碰到此类问题,没有什么章法
1.
package spark.exampl
- 你所熟知的 LRU(最近最少使用)
dalan_123
java
关于LRU这个名词在很多地方或听说,或使用,接下来看下lru缓存回收的实现
1、大体的想法
a、查询出最近最晚使用的项
b、给最近的使用的项做标记
通过使用链表就可以完成这两个操作,关于最近最少使用的项只需要返回链表的尾部;标记最近使用的项,只需要将该项移除并放置到头部,那么难点就出现 你如何能够快速在链表定位对应的该项?
这时候多
- Javascript 跨域
周凡杨
JavaScriptjsonp跨域cross-domain
 
- linux下安装apache服务器
g21121
apache
安装apache
下载windows版本apache,下载地址:http://httpd.apache.org/download.cgi
1.windows下安装apache
Windows下安装apache比较简单,注意选择路径和端口即可,这里就不再赘述了。 2.linux下安装apache:
下载之后上传到linux的相关目录,这里指定为/home/apach
- FineReport的JS编辑框和URL地址栏语法简介
老A不折腾
finereportweb报表报表软件语法总结
JS编辑框:
1.FineReport的js。
作为一款BS产品,browser端的JavaScript是必不可少的。
FineReport中的js是已经调用了finereport.js的。
大家知道,预览报表时,报表servlet会将cpt模板转为html,在这个html的head头部中会引入FineReport的js,这个finereport.js中包含了许多内置的fun
- 根据STATUS信息对MySQL进行优化
墙头上一根草
status
mysql 查看当前正在执行的操作,即正在执行的sql语句的方法为:
show processlist 命令
mysql> show global status;可以列出MySQL服务器运行各种状态值,我个人较喜欢的用法是show status like '查询值%';一、慢查询mysql> show variab
- 我的spring学习笔记7-Spring的Bean配置文件给Bean定义别名
aijuans
Spring 3
本文介绍如何给Spring的Bean配置文件的Bean定义别名?
原始的
<bean id="business" class="onlyfun.caterpillar.device.Business">
<property name="writer">
<ref b
- 高性能mysql 之 性能剖析
annan211
性能mysqlmysql 性能剖析剖析
1 定义性能优化
mysql服务器性能,此处定义为 响应时间。
在解释性能优化之前,先来消除一个误解,很多人认为,性能优化就是降低cpu的利用率或者减少对资源的使用。
这是一个陷阱。
资源时用来消耗并用来工作的,所以有时候消耗更多的资源能够加快查询速度,保持cpu忙绿,这是必要的。很多时候发现
编译进了新版本的InnoDB之后,cpu利用率上升的很厉害,这并不
- 主外键和索引唯一性约束
百合不是茶
索引唯一性约束主外键约束联机删除
目标;第一步;创建两张表 用户表和文章表
第二步;发表文章
1,建表;
---用户表 BlogUsers
--userID唯一的
--userName
--pwd
--sex
create
- 线程的调度
bijian1013
java多线程thread线程的调度java多线程
1. Java提供一个线程调度程序来监控程序中启动后进入可运行状态的所有线程。线程调度程序按照线程的优先级决定应调度哪些线程来执行。
2. 多数线程的调度是抢占式的(即我想中断程序运行就中断,不需要和将被中断的程序协商)
a) 
- 查看日志常用命令
bijian1013
linux命令unix
一.日志查找方法,可以用通配符查某台主机上的所有服务器grep "关键字" /wls/applogs/custom-*/error.log
二.查看日志常用命令1.grep '关键字' error.log:在error.log中搜索'关键字'2.grep -C10 '关键字' error.log:显示关键字前后10行记录3.grep '关键字' error.l
- 【持久化框架MyBatis3一】MyBatis版HelloWorld
bit1129
helloworld
MyBatis这个系列的文章,主要参考《Java Persistence with MyBatis 3》。
样例数据
本文以MySQL数据库为例,建立一个STUDENTS表,插入两条数据,然后进行单表的增删改查
CREATE TABLE STUDENTS
(
stud_id int(11) NOT NULL AUTO_INCREMENT,
- 【Hadoop十五】Hadoop Counter
bit1129
hadoop
1. 只有Map任务的Map Reduce Job
File System Counters
FILE: Number of bytes read=3629530
FILE: Number of bytes written=98312
FILE: Number of read operations=0
FILE: Number of lar
- 解决Tomcat数据连接池无法释放
ronin47
tomcat 连接池 优化
近段时间,公司的检测中心报表系统(SMC)的开发人员时不时找到我,说用户老是出现无法登录的情况。前些日子因为手头上 有Jboss集群的测试工作,发现用户不能登录时,都是在Tomcat中将这个项目Reload一下就好了,不过只是治标而已,因为大概几个小时之后又会 再次出现无法登录的情况。
今天上午,开发人员小毛又找到我,要我协助将这个问题根治一下,拖太久用户难保不投诉。
简单分析了一
- java-75-二叉树两结点的最低共同父结点
bylijinnan
java
import java.util.LinkedList;
import java.util.List;
import ljn.help.*;
public class BTreeLowestParentOfTwoNodes {
public static void main(String[] args) {
/*
* node data is stored in
- 行业垂直搜索引擎网页抓取项目
carlwu
LuceneNutchHeritrixSolr
公司有一个搜索引擎项目,希望各路高人有空来帮忙指导,谢谢!
这是详细需求:
(1) 通过提供的网站地址(大概100-200个网站),网页抓取程序能不断抓取网页和其它类型的文件(如Excel、PDF、Word、ppt及zip类型),并且程序能够根据事先提供的规则,过滤掉不相干的下载内容。
(2) 程序能够搜索这些抓取的内容,并能对这些抓取文件按照油田名进行分类,然后放到服务器不同的目录中。
- [通讯与服务]在总带宽资源没有大幅增加之前,不适宜大幅度降低资费
comsci
资源
降低通讯服务资费,就意味着有更多的用户进入,就意味着通讯服务提供商要接待和服务更多的用户,在总体运维成本没有由于技术升级而大幅下降的情况下,这种降低资费的行为将导致每个用户的平均带宽不断下降,而享受到的服务质量也在下降,这对用户和服务商都是不利的。。。。。。。。
&nbs
- Java时区转换及时间格式
Cwind
java
本文介绍Java API 中 Date, Calendar, TimeZone和DateFormat的使用,以及不同时区时间相互转化的方法和原理。
问题描述:
向处于不同时区的服务器发请求时需要考虑时区转换的问题。譬如,服务器位于东八区(北京时间,GMT+8:00),而身处东四区的用户想要查询当天的销售记录。则需把东四区的“今天”这个时间范围转换为服务器所在时区的时间范围。
- readonly,只读,不可用
dashuaifu
jsjspdisablereadOnlyreadOnly
readOnly 和 readonly 不同,在做js开发时一定要注意函数大小写和jsp黄线的警告!!!我就经历过这么一件事:
使用readOnly在某些浏览器或同一浏览器不同版本有的可以实现“只读”功能,有的就不行,而且函数readOnly有黄线警告!!!就这样被折磨了不短时间!!!(期间使用过disable函数,但是发现disable函数之后后台接收不到前台的的数据!!!)
- LABjs、RequireJS、SeaJS 介绍
dcj3sjt126com
jsWeb
LABjs 的核心是 LAB(Loading and Blocking):Loading 指异步并行加载,Blocking 是指同步等待执行。LABjs 通过优雅的语法(script 和 wait)实现了这两大特性,核心价值是性能优化。LABjs 是一个文件加载器。RequireJS 和 SeaJS 则是模块加载器,倡导的是一种模块化开发理念,核心价值是让 JavaScript 的模块化开发变得更
- [应用结构]入口脚本
dcj3sjt126com
PHPyii2
入口脚本
入口脚本是应用启动流程中的第一环,一个应用(不管是网页应用还是控制台应用)只有一个入口脚本。终端用户的请求通过入口脚本实例化应用并将将请求转发到应用。
Web 应用的入口脚本必须放在终端用户能够访问的目录下,通常命名为 index.php,也可以使用 Web 服务器能定位到的其他名称。
控制台应用的入口脚本一般在应用根目录下命名为 yii(后缀为.php),该文
- haoop shell命令
eksliang
hadoophadoop shell
cat
chgrp
chmod
chown
copyFromLocal
copyToLocal
cp
du
dus
expunge
get
getmerge
ls
lsr
mkdir
movefromLocal
mv
put
rm
rmr
setrep
stat
tail
test
text
- MultiStateView不同的状态下显示不同的界面
gundumw100
android
只要将指定的view放在该控件里面,可以该view在不同的状态下显示不同的界面,这对ListView很有用,比如加载界面,空白界面,错误界面。而且这些见面由你指定布局,非常灵活。
PS:ListView虽然可以设置一个EmptyView,但使用起来不方便,不灵活,有点累赘。
<com.kennyc.view.MultiStateView xmlns:android=&qu
- jQuery实现页面内锚点平滑跳转
ini
JavaScripthtmljqueryhtml5css
平时我们做导航滚动到内容都是通过锚点来做,刷的一下就直接跳到内容了,没有一丝的滚动效果,而且 url 链接最后会有“小尾巴”,就像#keleyi,今天我就介绍一款 jquery 做的滚动的特效,既可以设置滚动速度,又可以在 url 链接上没有“小尾巴”。
效果体验:http://keleyi.com/keleyi/phtml/jqtexiao/37.htmHTML文件代码:
&
- kafka offset迁移
kane_xie
kafka
在早前的kafka版本中(0.8.0),offset是被存储在zookeeper中的。
到当前版本(0.8.2)为止,kafka同时支持offset存储在zookeeper和offset manager(broker)中。
从官方的说明来看,未来offset的zookeeper存储将会被弃用。因此现有的基于kafka的项目如果今后计划保持更新的话,可以考虑在合适
- android > 搭建 cordova 环境
mft8899
android
1 , 安装 node.js
http://nodejs.org
node -v 查看版本
2, 安装 npm
可以先从 https://github.com/isaacs/npm/tags 下载 源码 解压到
- java封装的比较器,比较是否全相同,获取不同字段名字
qifeifei
非常实用的java比较器,贴上代码:
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import net.sf.json.JSONArray;
import net.sf.json.JSONObject;
import net.sf.json.JsonConfig;
i
- 记录一些函数用法
.Aky.
位运算PHP数据库函数IP
高手们照旧忽略。
想弄个全天朝IP段数据库,找了个今天最新更新的国内所有运营商IP段,copy到文件,用文件函数,字符串函数把玩下。分割出startIp和endIp这样格式写入.txt文件,直接用phpmyadmin导入.csv文件的形式导入。(生命在于折腾,也许你们觉得我傻X,直接下载人家弄好的导入不就可以,做自己的菜鸟,让别人去说吧)
当然用到了ip2long()函数把字符串转为整型数
- sublime text 3 rust
wudixiaotie
Sublime Text
1.sublime text 3 => install package => Rust
2.cd ~/.config/sublime-text-3/Packages
3.mkdir rust
4.git clone https://github.com/sp0/rust-style
5.cd rust-style
6.cargo build --release
7.ctrl