- Python机器学习实战:主成分分析(PCA)的原理和实战操作
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:主成分分析(PCA)的原理和实战操作1.背景介绍1.1什么是主成分分析(PCA)?主成分分析(PrincipalComponentAnalysis,PCA)是一种常用的无监督学习算法,用于数据降维和特征提取。它通过线性变换将原始高维数据映射到低维空间,同时保留数据的主要特征和信息。PCA的目标是找到数据中最主要的方向(主成分),沿着这些方向对数据进行投影,从而实现降维。1
- 数据结构与算法之栈: LeetCode 3100. 换水问题 II (Ts版)
Wang's Blog
DataStructureandAlgorithmsleetcode算法
换水问题II给你两个整数numBottles和numExchange。numBottles代表你最初拥有的满水瓶数量。在一次操作中,你可以执行以下操作之一:喝掉任意数量的满水瓶,使它们变成空水瓶。用numExchange个空水瓶交换一个满水瓶。然后,将numExchange的值增加1。注意,你不能使用相同的numExchange值交换多批空水瓶。例如,如果numBottles==3并且numExc
- 代码随想录算法训练营Day51 | 101.孤岛的总面积、102.沉没孤岛、103.水流问题、104.建造最大岛屿
Harryline-lx
代码随想录算法深度优先
文章目录101.孤岛的总面积思路与重点102.沉没孤岛思路与重点103.水流问题思路与重点104.建造最大岛屿思路与重点101.孤岛的总面积题目链接:101.孤岛的总面积讲解链接:代码随想录状态:直接看题解了。思路与重点nextx或者nexty越界了则说明当前的x或y处于边界处,所以当前的岛不是孤岛,不能记入总面积。#include#includeusingnamespacestd;intdir[
- 《语音识别模式、算法设计与实践》——第一章 语音识别概述
静候光阴
语音识别语音识别人工智能python
专栏总目录1.1走进语音识别1.1.1语音识别的定义定义:语音识别是让机器具备自动接收和分析人类的语音,并最终输出对应文本的过程。目标:将输入语音转化为文字的输出目标实现条件:提前规定好该系统可以接收的语音输入形式,比如单个词、命令短语和连续语音。对应的文本输出形式,可以直接翻译出来的对应文本,也可以是经过编码的特殊字符,比如组成发音的基本单位——音素。由此可知,系统的输入和输出不同,决定了语音识
- 多维多重背包问题_各种背包五(二维费用背包问题)
zLiM5
多维多重背包问题
问题二维费用的背包问题是指:对于每件物品,具有两种不同的费用;选择这件物品必须同时付出这两种代价;对于每种代价都有一个可付出的最大值(背包容量)。问怎样选择物品可以得到最大的价值。设这两种代价分别为代价1和代价2,第i件物品所需的两种代价分别为a[i]和b[i]。两种代价可付出的最大值(两种背包容量)分别为V和U。物品的价值为w[i]。算法费用加了一维,只需状态也加一维即可。设f[i][v][u]
- 【二维费用的完全背包问题】
羊毛多一点
算法学习动态规划
前言简单写一下算法设计与分析这门课的一次实验原题要求是用0-1背包来做,但是老师要求用完全背包来做!一、完全背包与0-1背包有什么区别?0-1背包,顾名思义对于每件物品只能拿1次或者0次;而完全背包对于每件物品的拿取没有次数限制。二、二维费用背包二维费用背包是对于每件物品的拿取要付出两项代价,如:重量和体积。三、0-1背包理解0-1背包对我们理解其他背包问题十分重要,首先说一下0-1背包。问题描述
- 【数据结构与算法】力扣 5. 最长回文子串
秀秀_heo
数据结构与算法leetcode算法职场和发展
题目描述5.最长回文子串给你一个字符串s,找到s中最长的回文子串。示例1:输入:s="babad"输出:"bab"解释:"aba"同样是符合题意的答案。示例2:输入:s="cbbd"输出:"bb"提示:1=0&&rightmaxLen){start=oddStart;maxLen=oddLen;}//处理偶数长度回文let[evenStart,evenLen]=expandAroundCenter
- 探索Web3世界:算法与挖矿详解
Java先进事迹
web3算法
哈希算法:区块链的“数字指纹”区块链的结构类似于链表,数据块一个连着一个,链接在一条或多条链上。每个数据块都至少记录着数据、自己的地址和前一个数据块的地址。每个数据块的“地址”的编码都是独一无二的,通过一种称为哈希算法的技术生成。哈希算法能够将任意长度的数据映射为一个固定长度的唯一编码(哈希值)。即使输入数据发生微小变化,生成的哈希值也会截然不同。我们可以将哈希算法比作一台神奇的调色机。无论你放入
- 组合导航中Kalman滤波算法相关知识简述
十八与她
捷联惯导算法与组合导航原理算法机器学习人工智能组合导航惯导
组合导航中Kalman滤波算法相关知识简述温馨提示:阅读本篇博文内容,需要读者具备一定的Kalman滤波基础知识上图即为Kalman滤波算法的框架,分为预测(时间更新)和更新(量测更新)两部分,其参数估计的过程就是两者循环迭代的过程。预报,就是根据系统状态方程,从前一时刻状态预测当前时刻的状态的过程,可理解成对系统的先验知识的一种推算。预报中,状态估计和它的方差协方差阵也要给出,从方差协方差阵P的
- 基于DQ轴谐波提取器的PMSM谐波抑制算法仿真研究:主动注入谐波电压与SVPWM调制策略的效果分析
BIdOeVNkOZSO
算法单片机嵌入式硬件
PMSM谐波抑制算法基于DQ轴谐波提取器的永磁同步电机仿真1.通过谐波提取器,直接提取DQ轴的谐波分量进行抑制,对五七次谐波电流抑制效果效果很好。2.为了放大效果,采用主动注入谐波电压的方法,增大了电机中的谐波分量。3.调制算法采用SVPWM,电流环处搭建了解耦补偿模块,控制效果更好。YID:799786174661444甜水井朴素的梭子蟹永磁同步电机仿真:PMSM谐波抑制算法的探索与实现在电力电
- GEE python——gee_pyccd基于连续监测变化检测(Continuous Change Detection and Classification, CCDC)
此星光明
GEE-PYTHONpython开发语言geeccdc变化检测py连续性
目录简介gee_pyccdPyCCDCCDC算法代码1代码2结果简介gee_pyccd协调在GoogleEarthEngine数据上使用PyCCD的脚本。此存储库与Google或USGS没有正式关联。gee_pyccd是一个基于GoogleEarthEngine平台的Python库,用于对遥感时间序列数据进行变化检测和趋势分析。它实现了基于连续监测变化检测(ContinuousChangeDete
- 读书笔记-《Redis设计与实现》(二)单机数据库实现(上)
萝卜青今天也要开心
redis数据库缓存java学习
相比前面我们学习的数据结构与对象(读书笔记-《Redis设计与实现》(一)数据结构与对象(上)、读书笔记-《Redis设计与实现》(一)数据结构与对象(下)),这部分的内容可以说就是轻松+愉快了,只要能Get到这几个机制的要点就行。01数据库Redis将所有数据库都保存在redisServer结构中,客户端结构为redisClient,它们的关键属性如下:structredisServer{//一
- 模式识别与机器学习(Python实现):基于sklearn朴素贝叶斯模型实现男女分类
CV视界
模式识别机器学习与图像处理机器学习python人工智能
模式识别与机器学习(Python实现):基于sklearn朴素贝叶斯模型和pazen窗方法实现男女分类欢迎大家来到安静到无声的《模式识别与人工智能(程序与算法)》,如果对所写内容感兴趣请看模式识别与人工智能(程序与算法)系列讲解-总目录,同时这也可以作为大家学习的参考。欢迎订阅,优惠价只需9.9元,请多多支持!目录标题模式识别与机器学习(Python实现):基于sklearn朴素贝叶斯模型和paz
- 单词搜索--回溯算法
jump_into_zehe
回溯算法字符串
LeetCode单词搜索给定一个二维网格board和一个字典中的单词列表words,找出所有同时在二维网格和字典中出现的单词。单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母在一个单词中不允许被重复使用。示例:输入:words=["oath","pea","eat","rain"]andboard=[['o','a','a
- LeetCode:53.最大子序和
xiaoshiguang3
代码随想录-跟着Carl学算法leetcode算法java动态规划
跟着carl学算法,本系列博客仅做个人记录,建议大家都去看carl本人的博客,写的真的很好的!代码随想录LeetCode:53.最大子序和给你一个整数数组nums,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。子数组是数组中的一个连续部分。示例1:输入:nums=[-2,1,-3,4,-1,2,1,-5,4]输出:6解释:连续子数组[4,-1,2,1]的和最大,为6。
- 智能优化算法应用:天鹰算法优化脉冲耦合神经网络的图像自动分割
智能算法研学社(Jack旭)
智能优化算法应用图像分割算法神经网络人工智能
智能优化算法应用:天鹰算法优化脉冲耦合神经网络的图像自动分割文章目录智能优化算法应用:天鹰算法优化脉冲耦合神经网络的图像自动分割1.天鹰算法2.PCNN网络3.实验结果4.参考文献5.Matlab代码摘要:本文利用天鹰算法对脉冲耦合神经网络的参数进行优化,以信息熵作为适应度函数,提高其图像分割的性能。1.天鹰算法天鹰算法原理请参考:https://blog.csdn.net/u011835903/
- 无需标定板!Galibr:无需目标的LiDAR相机外参标定新方法
计算机视觉工坊
3D视觉从入门到精通数码相机自动驾驶
编辑:3DCV添加小助理:dddvision,备注:方向+学校/公司+昵称,拉你入群。文末附行业细分群扫描下方二维码,加入3D视觉知识星球,星球内凝聚了众多3D视觉实战问题,以及各个模块的学习资料:近20门视频课程(星球成员免费学习)、最新顶会论文、3D视觉最新模组、3DGS系列(视频+文档)、计算机视觉书籍、优质3D视觉算法源码等。想要入门3D视觉、做项目、搞科研,欢迎扫码加入!写在前面这篇文章
- Java 集合框架:HashMap 的介绍、使用、原理与源码解析
NicoleGus
哈希算法散列表算法
一、HashMap介绍HashMap是Java集合框架中最常用的数据结构之一。它实现了Map接口,允许我们以键值对的形式存储数据。HashMap的主要特点是通过哈希表(HashTable)来实现对数据的高效查找、插入和删除操作。1.特性无序存储:HashMap并不保证元素的顺序,元素的顺序可能会随着插入的顺序和哈希冲突的解决方式而变化。允许null键和null值:HashMap允许一个null键和
- 带你从入门到精通——Python(十一. 闭包、装饰器和深浅拷贝)
梦想是成为算法高手
Pythonpython开发语言
建议先阅读我Python专栏中的前置博客,掌握一定的Python前置知识后再阅读本文,链接如下:Python_梦想是成为算法高手的博客-CSDN博客目录十一.闭包、装饰器和深浅拷贝11.1闭包11.1.1作用域11.1.2闭包概述11.1.3global关键字和nonlocal关键字11.2装饰器11.2.1装饰器概述11.2.2装饰器的使用方法11.2.3带参数的语法糖装饰器11.3深浅拷贝11
- Oracle 分区在什么情况下使用?思维导图 代码示例(java 架构)
用心去追梦
oraclejava架构
Oracle分区的适用场景Oracle分区(Partitioning)是一种强大的数据管理工具,适用于特定类型的数据库工作负载和数据结构。以下是一些适合使用分区的情况:1.大型表优化超大数据量:当表包含数百万甚至数十亿行时,分区可以帮助提高查询性能。频繁更新:对于经常被插入、更新或删除的数据,分区可以减少锁定范围,提高并发性。2.数据仓库历史数据分析:在数据仓库中,通常会存储多年的历史数据。通过按
- 线性回归的简单实现
SkaWxp
深度学习深度学习机器学习mxnetgluon
本文是《动手学深度学习》的笔记文章目录线性回归的简单实现生成随机数据集读取数据初始化模型参数定义模型定义损失函数定义优化算法训练模型线性回归的简洁实现生成数据集读取数据定义模型初始化模型参数定义损失函数定义优化算法训练模型线性回归的简单实现用了mxnet中的自动求导和数组结构frommxnetimportautograd,ndimportrandom生成随机数据集只有这个是用了自己造的数据,因为线
- AtCoder备赛刷题 ABC 383 | 9 Divisors
热爱编程的通信人
算法
学习C++从娃娃抓起!记录下AtCoder(日本算法竞技网站)备赛学习过程中的题目,记录每一个瞬间。附上汇总贴:AtCoder备赛刷题|汇总【题目描述】FindthenumberofpositiveintegersnotgreaterthanNNNthathaveexactly999positivedivisors.找到不大于NNN且恰好有999个因数的正整数的数量。【输入】Theinputisg
- 软件设计师概念之 耦合类型
一坨仙女
软考笔记
耦合类型:(1)内容耦合:如果发生下列情形,两个模块之间就发生了内容耦合1.一个模块直接访问另一个模块的内部数据;2.一个模块不通过正常入口转到另一模块内部;3.两个模块有一部分程序代码重迭**(只可能出现在汇编语言中)**;4.一个模块有多个入口。(2)公共耦合:若一组模块都访问同一个公共数据环境,则它们之间的耦合就称为公共耦合。公共的数据环境可以是全局数据结构、共享的通信区、内存的公共覆盖区等
- 蓝桥杯python基础算法(2-2)——基础算法(C)——递归
X _X
PythonLanqiao算法
四、递归递归出口:这是递归过程中的终止条件,防止函数无限制地调用自身。当前问题如何变成子问题:这是递归函数中最重要的部分,即如何将当前问题逐步简化为更小的子问题。例题-汉诺塔Hanoi塔由n个大小不同的圆盘和三根木柱a,b,c组成。开始时,这n个圆盘由大到小依次套在a柱上,如图所示。要求把a柱上n个圆盘按下述规则移到c柱上:(1)一次只能移一个圆盘;(2)圆盘只能在三个柱上存放;(3)在移动过程中
- 算法随笔_35: 每日温度
程序趣谈
算法python数据结构
上一篇:算法随笔_34:最后一个单词的长度-CSDN博客=====题目描述如下:给定一个整数数组temperatures,表示每天的温度,返回一个数组answer,其中answer[i]是指对于第i天,下一个更高温度出现在几天后。如果气温在这之后都不会升高,请在该位置用0来代替。示例1:输入:temperatures=[73,74,75,71,69,72,76,73]输出: [1,1,4,2,1,
- 算法随笔_36: 复写零
程序趣谈
算法python数据结构
上一篇:算法随笔_35:每日温度-CSDN博客=====题目描述如下:给你一个长度固定的整数数组arr,请你将该数组中出现的每个零都复写一遍,并将其余的元素向右平移。注意:请不要在超过该数组长度的位置写入元素。请对输入的数组就地进行上述修改,不要从函数返回任何东西。示例1:输入:arr=[1,0,2,3,0,4,5,0]输出:[1,0,0,2,3,0,0,4]解释:调用函数后,输入的数组将被修改为
- 算法随笔_30: 去除重复字母
程序趣谈
算法python数据结构
上一篇:算法随笔_29:最大宽度坡_方法3-CSDN博客=====题目描述如下:给你一个字符串s,请你去除字符串中重复的字母,使得每个字母只出现一次。需保证返回结果的字典序最小(要求不能打乱其他字符的相对位置)。示例1:输入:s="bcabc"输出"abc"=====算法思路:首先我们考虑第一个条件:如何去掉字符串中重复的字母?这个比较简单。我们可以新开辟一个同样长度的新数组s_new来存储最后的
- MATLAB 实现基于MPA(海洋捕食者算法)进行时间序列预测模型的项目详细实例
nantangyuxi
MATLABmatlab算法人工智能回归cnn支持向量机大数据
目录MTFSTLTFSB实她基她MPTFS(海洋捕食者算法)进行时间序列预测模型她项目详细实例...1项目背景介绍...1项目目标她意义...1项目挑战...2项目特点她创新...3项目应用领域...3项目效果预测图程序设计...4项目模型架构...5项目模型描述及代码示例...5项目模型算法流程图...6项目目录结构设计及各模块功能说明...7项目部署她应用...9项目扩展...11项目应该注意
- 基于禁忌搜索算法的TSP问题最优路径搜索matlab仿真
软件算法开发
MATLAB程序开发#路线规划matlab禁忌搜索算法TSP最优路径搜索
目录1.程序功能描述2.测试软件版本以及运行结果展示3.核心程序4.本算法原理5.完整程序1.程序功能描述基于禁忌搜索算法的TSP问题最优路径搜索,旅行商问题(TSP)是一个经典的组合优化问题。其起源可以追溯到19世纪初,最初是在物流配送、线路规划等实际场景中被提出。简单来说,给定一组城市和城市之间的距离,旅行商需要从一个城市出发,访问每个城市恰好一次,最后回到起始城市,目标是找到总路程最短的路线
- ULTIMATE VOCAL REMOVER V5 for Mac v5.6 - UVR5终极人声去除器
qw人太好
macosuv
ULTIMATEVOCALREMOVERV5是一款功能强大的音频处理软件,旨在帮助用户去除音频文件中的人声部分,使其更适合用作背景音乐或进行混音处理。该软件使用了先进的音频处理算法,能够准确地识别和去除音频文件中的人声,从而获得纯净的背景音乐。无论是歌曲还是其他音频文件,ULTIMATEVOCALREMOVERV5都可以轻松去除其中的人声部分,让用户更好地享受纯音乐的乐趣。前往Mac荔枝下载ULT
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比