- 【13】地址-比特币区块链的地址
AlieNeny
从零到一开发自己的区块链区块链分布式账本哈希算法
1.比特币区块链的地址这就是一个真实的比特币地址:1A1zP1eP5QGefi2DMPTfTL5SLmv7DivfNa。这是史上第一个比特币地址,据说属于中本聪。比特币地址是完全公开的,如果你想要给某个人发送币,只需要知道他的地址就可以了。实际上,所谓的地址,只不过是将公钥表示成人类可读的形式而已。2.密码学相关算法和概念
- 2024年AI发展的感知回顾
八角Z
人工智能机器学习计算机视觉大数据
2024年,人工智能(AI)的发展呈现出诸多引人注目的关键词,深刻地塑造着技术格局、经济模式以及人类社会的方方面面。混合无疑成为这一年AI创新历程中最为显著的特征之一。多模态生成技术在这一年里取得了令人瞩目的不断进步,使得AI能够巧妙地将文本、图像、音频、视频等多种模态的信息进行深度融合与再创造。例如:AI内容创作:AI可以将作者的文字描述转换为生动的图像、视频和配乐,为创作提供更多可能性,让创意
- 大语言模型应用指南:OpenAI大语言模型简介
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型应用指南:OpenAI大语言模型简介1.背景介绍1.1问题的由来在过去几年中,自然语言处理(NLP)领域取得了长足的进步,这主要归功于大型语言模型(LargeLanguageModels,LLMs)的出现和发展。LLMs是一种基于深度学习的人工智能模型,能够从大量文本数据中学习语言模式和语义关系,从而生成看似人类写作的自然语言输出。随着计算能力和数据可用性的不断提高,LLMs的规模也在不
- 神经网络的通俗介绍
courniche
神经网络人工智能算法
人工神经网络,是一种模仿人类大脑工作原理的数学模型。人类的大脑是由无数的小“工作站”组成的,每个工作站叫做“神经元”。这些神经元通过“电线”互相连接,负责接收、处理和传递信息。一、人类大脑神经网络人类大脑的神经网络大概长这个样子:人类大脑的神经网络包括神经元和连接神经元的突触组成,大脑神经电信号在网络中传递实现信息的处理和分析。二、人工神经网络人工神经网络(简称:神经网络),是一种模仿人类大脑工作
- AI像人一样操控电脑:多模态AI Agents和屏幕交互新范式
编者按:未来我们与计算机的交互方式将发生怎样的变革?当AI能像人类一样自如地操控电脑和手机,我们的工作方式会有什么改变?本文深入剖析了Anthropic、微软和苹果三大科技巨头在突破这一瓶颈上的最新进展。通过解读他们各自独特的技术路线——从Anthropic采用像素计数方式实现精准导航,到微软将界面解析为结构化数据,再到苹果专注于移动端的多模态交互方案,文章为我们展现了AI驱动屏幕交互的未来图景。
- 《剖析Transformer架构:自然语言处理飞跃的幕后英雄》
人工智能深度学习
在人工智能的迅猛发展进程中,自然语言处理(NLP)领域取得了令人瞩目的突破,而Transformer架构无疑是这场变革的核心驱动力。自从2017年在论文《AttentionIsAllYouNeed》中被提出,Transformer便在NLP领域引发了一场革命,彻底改变了模型处理和理解人类语言的方式。打破传统枷锁,开创并行计算新时代在Transformer出现之前,循环神经网络(RNN)及其变体,如
- 图像处理之颜色空间小结
AI洲抿嘴的薯片
opencv算法专题图像处理人工智能
1.介绍在图像处理中,我们会遇到各式各样的颜色空间,比如RGB、HLS、HSV、HSB、YCrCb、CIEXYZ、CIELab,那么它们的区别和应用场所又在哪里呢?1)RGB是生活中最常见的颜色空间,其中,R代表红色通道,G代表绿色通道,B代表蓝色通道,它们之间的相互搭配组合256*256*256,几乎可以包括人类视力所能感知的所有颜色。应用场所:一般的彩色图片都是用RGB三通道来表示,另外,在深
- Direct Preference Optimization (DPO): 一种无需强化学习的语言模型偏好优化方法
Yuleave
论文学习语言模型人工智能自然语言处理
论文地址:https://arxiv.org/pdf/2305.182901.背景与挑战近年来,大规模无监督语言模型(LM)在知识获取和推理能力方面取得了显著进展,但如何精确控制其行为仍是一个难题。现有的方法通常通过**强化学习从人类反馈(RLHF)**来引导模型行为,但RLHF存在以下问题:复杂性高:RLHF需要先训练一个奖励模型来反映人类偏好,然后使用强化学习来微调语言模型,使其在最大化奖励的
- 【Python高阶篇】探索人工智能:使用Python构建一个简单的聊天机器人
码农必胜客
python人工智能机器人
人工智能是计算机科学中一个非常热门的领域,近年来得到了越来越多的关注。它通过模拟人类思考过程和智能行为来实现对复杂任务的自主处理和学习,已经被广泛应用于许多领域,包括语音识别、自然语言处理、机器人技术、图像识别和推荐系统等。本文将介绍如何使用Python构建一个简单的聊天机器人,以展示人工智能的基本原理和应用。我们将使用Python语言和自然语言处理库来构建一个聊天机器人,该机器人可以接收用户的输
- Vite + Vue3 + TS项目配置前置路由守卫
洛*璃
Vue.jsvue.js前端javascriptVue-RouterPiniatypescript
在现代前端开发中,使用Vue3和TypeScript的组合是一种流行且高效的开发方式。Vite是一个极速的构建工具,可以显著提升开发体验。本文博主将指导你如何在Vite+Vue3+TypeScript项目中配置前置路由守卫(NavigationGuards)。前置条件在开始配置项目前置路由守卫前,博主希望你能够先达成以下前置条件:1.完成Vue3前端项目搭建:Vite创建Vue3+TS项目2.引入
- RPA真的是人工智能吗?
微刻时光
RPA加油站rpa人工智能
1.RPA与AI的定义与区别1.1RPA的定义与特点机器人流程自动化(RoboticProcessAutomation,简称RPA)是一种软件技术,它通过模拟人类用户的操作行为来自动执行重复性、基于规则的任务。RPA的核心特点包括:非侵入性:RPA作为外挂工具部署在客户现有系统上,不影响原有IT基础架构。基于规则的操作:RPA流程必须有明确的、可被数字化的触发指令和输入,不允许出现无法提前定义的例
- 【自然语言处理(NLP)】jieba分词的使用(分词模式、关键词提取)
道友老李
自然语言处理(NLP)自然语言处理人工智能
文章目录介绍jieba分词的使用1.安装2.jieba分词模式2.1精确模式2.2全模式2.3搜索引擎模式2.4词性标注2.5加载自己的分词文件3.查看词频4.关键词提取个人主页:道友老李欢迎加入社区:道友老李的学习社区介绍**自然语言处理(NaturalLanguageProcessing,NLP)**是计算机科学领域与人工智能领域中的一个重要方向。它研究的是人类(自然)语言与计算机之间的交互。
- 游戏AI 技术方案部分解析 |用 AI 技术,练就 FPS 游戏中的刚枪王!
游戏智眼
游戏AI人工智能
一、整体方案详情FPS作为重度竞技游戏品类,存在显著的新手留存问题及高端匹配困难问题,通过引入AI陪玩智能体来针对性解决FPS品类通用痛点。在这个过程中,我们用到了强化学习,让AI通过自我在游戏中学习探索,最终成为超越或比肩人类顶尖玩家水平的强大AI。1.针对新手留存问题通过引入不同水平的陪玩智能体+智能投放来为新手玩家设计好前20局甚至前50局的对战,为玩家制造一个平滑的新手过渡期,帮手玩家更顺
- 2.2.3 代码格式与风格指南
阿凡工控分享
ST编程指南PLC开发语言PLC
编写清晰、规范的代码是提高代码可读性、可维护性和团队协作效率的关键。虽然好多人说工控行业都是一帮电工,没有什么素质,这完全是误解,任何程序所在的行业,都需要个人保证其代码风格能够很好与团队进行协作,在过去一台设备一个人写的多,往往不注意这些,这也导致了设备交接困难,成了后来接手工程师永远的痛,但是时代在发展,如今多人协作使得代码的规范性越来越成为如今的工控开发行业的共识。以下是ST(Structu
- 读论文 Situated Instruction Following
MhZhou0412
人工智能深度学习python
研究背景:在传统的指令跟随范式中,代理独自在一个空房子里行动,导致语言使用既简单又人为“完整”。与此相反,我们提出了情境指令跟随(SIF),该方法拥抱真实世界通信中固有的不完全和模糊性,具有人的物理存在。情境指令的意义通过人类的过去行动和预期未来行为自然展开。在我们的设置中,指令具有以下特征:(1)模糊不清,(2)具有时间演变的意图,(3)可以通过代理的动态行动更精确地解释。SIF中的任务包括两个
- Spring Boot + Jasypt 实现application.yml 属性加密的快速示例
oscar999
SpringBoot实战开发大全springbootjava属性加密
Jasypt(JavaSimplifiedEncryption)是一个专为Java应用程序设计的开源加密库,旨在简化加密和解密流程,保护敏感数据如密码、API密钥等。jasypt-spring-boot-starter允许开发者在SpringBoot应用中轻松地实现加密和解密功能。本篇介绍使用jasypt-spring-boot-starter以达成在application.yml等配置文件中使用
- Python之JSON数据结构
CL.LIANG
python基础pythonjson数据结构
JSON数据结构介绍JSON(JavaScriptObjectNotation)优势:1.易于阅读和编写JSON的结构直观、简单,类似于键值对的形式,易于人类阅读和编写。与XML等数据格式相比,JSON的语法更简洁,没有复杂的标记符号。2.轻量化JSON格式相比其他数据格式(如XML),更简洁,没有多余的标记,数据体积较小,这使得数据传输更加高效,尤其是在网络应用中。3.与JavaScript天然
- 基于数智立体化V2.0体系构建医疗综合智能体:理论、实践与展望
Allen_LVyingbo
医疗高效编程研发python健康医疗知识图谱python
一、引言1.1研究背景与意义医疗行业作为关乎人类生命健康与社会福祉的重要领域,始终处于不断发展与变革的进程之中。在当下,随着全球人口老龄化趋势的加剧,慢性疾病的发病率持续攀升,人们对医疗服务的需求呈现出快速增长且日益多样化的态势。与此同时,传统医疗模式在应对这些挑战时,逐渐暴露出诸多问题,如医疗资源分布不均衡,偏远地区和基层医疗机构面临着医疗技术匮乏、设备陈旧等困境;医疗服务效率低下,患者就医等待
- Corki:具身 AI 机器人的软硬件协同设计
硅谷秋水
大模型智能体计算机视觉人工智能机器人机器学习计算机视觉
24年11月来自中科院大学、美团、深圳AI机器人研究院、天津大学和中科院计算所的论文“Software-HardwareCo-DesignForEmbodiedAIRobots”。具身AI机器人有可能从根本上改善人类的生活和生产方式。使用大语言模型控制机器人这一新兴领域的持续进步关键取决于高效的计算基础。特别是,当今具身AI机器人的计算系统纯粹基于算法开发人员的兴趣而设计,其中机器人动作被划分为一
- 嵌入式音视频开发——视频篇(三)
程序猿玖月柒
音视频音视频
本笔记来源于学习韦东山团队课程,自己选择性摘抄加深记忆和学习的效果。帧率与时间戳帧率(framerate)是指视频播放中每秒显示的图像帧数。测量单位为“每秒显示帧数”(framepersecond,FPS)或“赫兹”,一般来说FPS用于描述影片、电子绘图或游戏每秒播放多少帧。人类视觉的时间敏感性和分辨率根据视觉刺激的类型和特征而变化,并且在个体之间是不同的。由于人类眼睛的特殊生理结构,如果所看画面
- 2024年人工智能领域发生了哪些事儿?全球AI大事件1至12月盘点
人工智能aigc
2024年,对人工智能(AI)而言是激动人心的一年。这一年不仅见证了AI技术的全面突破,也深刻改变了社会生活的方方面面。从金融到医疗、从教育到娱乐,AI的深度渗透无处不在。显然,这项技术已经从概念走向普及,并开始重新定义我们的未来。一月:人机交互技术的崭新开端2024年1月30日:Neuralink脑机接口植入Neuralink宣布,首名人类成功接受脑机接口芯片植入手术。这项手术由机器人完成,芯片
- 深度探索 DeepSeek-R1:国产大模型的AGI雏形与创新进展
微凉的衣柜
科技头条agi人工智能
随着人工智能技术的飞速发展,国内外企业纷纷发布了一系列创新的大模型,推动了AGI(通用人工智能)领域的探索。近期,DeepSeek-R1这一模型的发布引起了广泛关注,它不仅标志着国产大模型在智能化上的一次重大突破,还提出了全新的训练方法,解决了过去依赖大量人类数据的问题。本篇文章将详细介绍DeepSeek-R1的核心优势、技术创新以及实际应用案例,揭示它在AGI领域的潜力。1.DeepSeek-R
- 【自然语言处理(NLP)】NLTK的使用(分句、分词、词频提取)
道友老李
自然语言处理(NLP)自然语言处理人工智能
文章目录介绍NLTK主要功能模块安装使用分句分词去除标点符号去除停用词stopword噪音单词,词频提取个人主页:道友老李欢迎加入社区:道友老李的学习社区介绍自然语言处理(NaturalLanguageProcessing,NLP)是计算机科学领域与人工智能领域中的一个重要方向。它研究的是人类(自然)语言与计算机之间的交互。NLP的目标是让计算机能够理解、解析、生成人类语言,并且能够以有意义的方式
- 【自然语言处理(NLP)】序列数据研究(创建序列数据、简单的MLP模型、预测结果分析)
道友老李
自然语言处理(NLP)自然语言处理人工智能
文章目录介绍序列数据研究导包安装d2l创建序列数据创建模型开始训练预测多步预测结论个人主页:道友老李欢迎加入社区:道友老李的学习社区介绍自然语言处理(NaturalLanguageProcessing,NLP)是计算机科学领域与人工智能领域中的一个重要方向。它研究的是人类(自然)语言与计算机之间的交互。NLP的目标是让计算机能够理解、解析、生成人类语言,并且能够以有意义的方式回应和操作这些信息。N
- 网络安全大模型和人工智能场景及应用理解
hao_wujing
web安全安全
本文通过通俗易懂的方式的进行阐述,大家读完觉得有帮助记得及时关注和点赞!!!一、网络安全大模型的概述网络安全大模型是一种用于识别和应对各种网络安全威胁的模型。它通过分析网络数据包、网络行为等信息,识别潜在的网络安全事件,并采取相应的措施进行防御。人工智能(AI)是指由计算机系统或机器执行的智能任务,通常需要人类智能来完成。AI的一个重要分支是(NLP),即让计算机理解和生成自然语言。NLP的一个核
- 新质生产力与核心竞争力提升
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
新质生产力、人工智能、机器学习、深度学习、算法优化、数据驱动、核心竞争力、数字化转型1.背景介绍在当今数字化时代,科技创新正以惊人的速度推动着社会发展。人工智能(AI)作为科技发展的重要驱动力,正在深刻地改变着生产方式和生活方式。从自动驾驶汽车到智能语音助手,从个性化推荐系统到医疗诊断辅助,AI技术的应用场景日益广泛,为人类社会带来了前所未有的机遇。然而,AI技术的应用并非一帆风顺。如何有效地利用
- 深入浅出之注意力机制(YOLO)
浩瀚之水_csdn
#深度学习基础知识深度学习目标检测YOLO目标检测专栏YOLO
一、基本概念注意力机制(AttentionMechanism)源于对人类视觉的研究。在认知科学中,由于信息处理的瓶颈,人类会选择性地关注所有信息的一部分,同时忽略其他可见的信息,这种机制被称为注意力机制。它主要有两个方面:一是决定需要关注输入的哪部分,二是分配有限的信息处理资源给重要的部分。该机制可以应用于任何类型的输入,而不管其形状如何。在计算能力有限的情况下,注意力机制是解决信息超载问题的主要
- WiseAD:基于视觉-语言模型的知识增强型端到端自动驾驶
硅谷秋水
计算机视觉大模型自动驾驶语言模型自动驾驶人工智能机器学习
24年12月来自新加坡国立和浙大的论文“WiseAD:KnowledgeAugmentedEnd-to-EndAutonomousDrivingwithVision-LanguageModel”。随着视觉语言模型(VLM)的快速发展,人类通用知识和令人印象深刻的逻辑推理能力的出现,推动人们对将VLM应用于高级自动驾驶任务(如场景理解和决策)的兴趣日益浓厚。然而,深入研究知识熟练程度(尤其是基本驾驶
- 人工智能和云计算带来的技术变革:人工智能实现自动化营销的方式
AI天才研究院
AI实战AI大模型企业级应用开发实战大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍随着人工智能(AI)和云计算技术的不断发展,我们正面临着一场技术革命。这场革命正在改变我们的生活方式、工作方式和商业模式。在这篇文章中,我们将探讨人工智能如何实现自动化营销的方式,并深入了解其背后的核心概念、算法原理、代码实例等。1.1人工智能简介人工智能是一种计算机科学的分支,旨在让计算机具有人类智能的能力,如学习、推理、感知、语言理解等。人工智能的目标是让计算机能够理解自然语言、解
- 如何将json格式转换为dataframe格式
若木胡
json
介绍欢迎关注我的公众号《若木的解忧杂货铺》json格式JSON(JavaScriptObjectNotation)是一种轻量级的数据交换格式,它基于JavaScript语言的一个子集,但同时独立于任何编程语言。JSON格式易于人类阅读和编写,同时也易于机器解析和生成,这使得它成为理想的数据交换语言。JSON的基本格式JSON格式主要包括数值、字符串、数组、对象、对象数组和数组对象这几种类型。以下是
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><