题目来源:2020年HDU Multi-University Training Contest 9 1003题
题目描述 :
Orac and Slime are playing a game.
There are two groups of stones, the first group contains a stones and the second contains b stones. Orac and Slime operate them by turns in the game. For each operation, they have two choices:
输入 :
The first line contains one integer T(1≤T≤1e5), which stands for the number of queries that Orac makes.
In the following T lines, each line contains three integer a,b,k(1≤a≤1e8,1≤b≤1e8,0≤k≤1e8).
输出 :
The output contains T lines, with an integer 0 or 1 in each line, stand for there exist/not exist a winning strategy for the given situation.
样例输入:
4
1 2 0
2 4 0
1 2 1
2 6 1
样例输出:
0
1
1
0
提示 :
In the first query, if Orac picks up all the stones from a group, Slime will pick up all the stones from the other group, and if Orac picks up a stone from the second group, Slime will pick up a stone from both groups.
题目大意:给定a,b两堆石头,Orac 和 Slime 轮流取,取的规则有以下两种:
1.拿其中一堆石头的任意个;
2.两堆都拿,但两堆个数差的绝对值要小于等于k。
刚拿到这个题的时候,我们发现当k=0时,这个题会退化成威佐夫博弈。
但是我们都只记得威佐夫博弈的公式是
n*(√5+2)/2
但是这公式咋来的忘了……于是从BEATTY函数开始重新推(BEATTY函数,若a,b两堆数,a和b不相交且a并b等于R,则1/a+1/b=1)
顺便在这里推一边威佐夫博弈吧:
先手的必败态:
(0,0) 差为0
(1,2) 差为1
(3,5) 差为2
(4,7) 差为3
(8,12) 差为4
……
我们可以大概看出差是在递增的,若a=an,则b=an+n
根据BEATTY函数,1/α+1/(α+1)=1
可解得α=(√5+2)/2
当差*α==a,则先手必败
用同样的方法,我们来推这道题:
先手只有在差为k+1时才可能必败
其根据BEATTY函数,1/α+1/(α+k+1)=1
α=(√(k^2+2*k+5)+1-k)/2
当差==(k+1)的倍数,且差/(k+1)*α==a,则先手必败
代码如下:
#pragma GCC optimize(3,"Ofast","inline")
#pragma G++ optimize(3)
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ll,ll> pll;
typedef pair<int,int> pii;
typedef queue<int> q_i;
typedef queue<string> q_s;
typedef queue<double> q_d;
typedef queue<ll> q_ll;
typedef queue<char> q_c;
typedef priority_queue<int> pq_i;
typedef priority_queue<string> pq_s;
typedef priority_queue<double> pq_d;
typedef priority_queue<ll> pq_ll;
typedef stack<int> s_i;
typedef stack<string> s_s;
typedef stack<double> s_d;
typedef stack<ll> s_ll;
typedef stack<char> s_c;
typedef map<ll,ll> m_ll_ll;
typedef map<int,ll> m_i_ll;
typedef map<int,int> m_i_i;
typedef map<string,ll> m_s_ll;
typedef map<char,int> m_c_i;
typedef map<char,ll> m_c_ll;
const ll INF=0x3f3f3f3f;
#define rep(i,l,r) for(ll i=l;i<=r;i++)
#define per(i,l,r) for(ll i=r;i>=l;i--)
#define eif else if
#define N 100005
#define mm(dp) memset(dp,0,sizeof(dp))
#define mm1(dp) memset(dp,-1,sizeof(dp))
#define mm2(dp) memset(dp,0x3f,sizeof(dp))
#define IT set::iterator
#define fs(n) fixed<< setprecision(n)
//const double e=2.71828182845;
#define max(a,b) a>b?a:b
#define min(a,b) a
const double pi = acos(-1.0);
const ll mod=998244353;
inline int read(){
int s=0,w=1;
char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') s=s*10+ch-'0',ch=getchar();
return s*w;
}
inline void write(ll x)
{
if(x<0)
putchar('-'),x=-x;
if(x>9)
write(x/10);
putchar(x%10+'0');
}
float SqrtByCarmack( float number )
{
int i;
float x2, y;
const float threehalfs = 1.5F;
x2 = number * 0.5F;
y = number;
i = * ( int * ) &y;
i = 0x5f375a86 - ( i >> 1 );
y = * ( float * ) &i;
y = y * ( threehalfs - ( x2 * y * y ) );
y = y * ( threehalfs - ( x2 * y * y ) );
y = y * ( threehalfs - ( x2 * y * y ) );
return number*y;
}
ll qpow(ll a,ll b,ll mod)
{
ll sum=1;
while(b)
{
if(b%2==1)
{
sum=sum*a%mod;
}
b/=2;
a=a*a%mod;
}
return sum;
}
int erfen(int *a,int start,int endd,int l)//小于等于l的最大值的角标
{
int mid=(start+endd)/2;
if((a[mid]<=l&&a[mid+1]>l)||(mid==endd&&a[mid]<=l))
return mid;
else if(a[mid]<=l)
return erfen(a,mid+1,endd,l);
else if(a[mid]>l)
{
if(start!=mid)
return erfen(a,start,mid,l);
else
return start-1;
}
}
ll prime[6] = {2, 3, 5, 233, 331};
ll qmul(ll x, ll y, ll mod)
{
return (x * y - (long long)(x / (long double)mod * y + 1e-3) *mod + mod) % mod;
}
bool Miller_Rabin(ll p)
{
if(p < 2)
return 0;
if(p != 2 && p % 2 == 0)
return 0;
ll s = p - 1;
while(! (s & 1))
s >>= 1;
for(int i = 0; i < 5; ++i)
{
if(p == prime[i])
return 1;
ll t = s, m = qpow(prime[i], s, p);
while(t != p - 1 && m != 1 && m != p - 1)
{
m = qmul(m, m, p);
t <<= 1;
}
if(m != p - 1 && !(t & 1))
return 0;
}
return 1;
}
ll gcd(ll x,ll y)
{
if(y==0)
return x;
else
return gcd(y,x%y);
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int T;
cin>>T;
while(T--)
{
ll a,b,k;
cin>>a>>b>>k;
int p=a;
if(a>b)
{
a=b;
b=p;
}
int cha=b-a;
double num=((1-k)+sqrt(k*k+2*k+5))/2;
if(cha%(k+1)!=0)
{
cout<<1<<'\n';
continue;
}
cha=cha/(k+1);
ll nm=floor(num*cha);
if(nm==a)
cout<<0<<'\n';
else
cout<<1<<'\n';
}
return 0;
}