- 线性回归(1)
zidea
MachineLearninginMarketing感谢李宏毅《回归-案例研究》部分内容为听取李宏毅老师讲座的笔记,也融入了自己对机器学习理解,个人推荐李宏毅老师的机器学习系列课程,尤其对于初学者强烈推荐。课程设计相对其他课程要容易理解。在机器学习中算法通常分为回归和分类两种,今天我们探讨什么线性回归。以及如何设计一个线性回归模型。什么回归简单理解通过数据最终预测出来一个值。回归问题的实例就是找到
- 从零开始学Python系列课程第07课:Python的输入和输出函数
HerrFu
Python基础python开发语言学习
在程序的执行过程中,可能我们有需要与程序进行交互的地方,那么这些交互应该怎样去编写,是我们需要思考的问题,为此Python提供了输入和输出函数,以便我们和程序之间的简单交互操作。一、输入函数——input我们借助input函数,能够将我们所想的数据传入到程序中,如下例子:str_1=input()此时程序执行时便会要求我们输入内容,输入的内容会被保存到变量str_1中,另外,无论输入函数input
- 从零开始学Python系列课程第02课:Python环境搭建
HerrFu
Python基础python开发语言学习
学习一门新的编程语言,少不了安装各种各样的软件和配置各种各样的环境,为此,给学习本门课程的同学准备了一份环境安装指南,接下来请认真食用。一、安装包下载Python官网:https://www.python.org/上述界面为Python官网首页,在Downloads选项可以下载到Windows、Mac、Linux的Python安装程序或二进制文件。大家可以自行查看官网内容获取Python的安装包,
- 从零开始学Python系列课程第04课:编写并运行Python程序
HerrFu
Python基础pythonpycharm开发语言
在前几篇文章中,我们已经了解了Python语言、安装了运行和编写Python程序所必需的环境、创建了一个新的Python项目,相信大家已经迫不及待的想开始自己的Python编程之旅了。一、创建Python文件书接上文,在讲述了PyCharm如何创建项目之后,还不能直接写代码,还需要创建一个能够承载Python代码的文件,这个文件的后缀名为.py,请看下方截图,如何创建:在前面创建好的Python项
- 从零开始学Python系列课程第01课:Python认知
HerrFu
Python基础python开发语言学习
学习一门编程语言,我们首先要知道这门语言的身世,这样才能够更好的帮助我们了解和认识它!Python是由荷兰数学和计算机科学研究学会的GuidovanRossum(吉多·范罗苏姆,以下简称:吉多大爷)于1990年初设计,准备用Python作为一门叫做ABC语言的替代品。ABC语言ABC语言是NWO(荷兰科学研究组织)旗下CWI(荷兰国家数学与计算机科学研究中心)的LeoGrurts、LambertM
- 从零开始学Python系列课程第14课:Python中的循环结构(下)
HerrFu
Python基础python开发语言学习
在本篇文章中,我们对上文讲过的循环结构做少许补充,除去for-in循环和while循环,其实还存在for-else结构和while-else结构。只是这在编程语言界,Python属于独一份了,独一份循环结构还可以与else关键字一起使用的编程语言,不过这种用法哪怕在Python中也是比较小众。哪怕用到,绝大部分场景也是给到for-else结构,今天我们以for-else结构为例,为大家讲解如何使用
- 从零开始学Python系列课程第16课:Python常见容器型数据类型介绍
HerrFu
Python基础python开发语言学习
Python中有个容器的知识点非常重要,一定要认真学习。我们把可以包含其他数据的数据类型,称之为容器,我们将Python中常用的容器划分为三种:内容连续、有顺序、可以使用下标索引的一类数据容器,我们称之为序列,Python中的列表、字符串、元组都属于序列。在数学里,映射是一个术语,指两个数据集中的元素存在相互对应的关系,称为映射,Python的字典中的元素就具有这样的对应关系。既没有序列的特性,也
- 从零开始学Python系列课程第13课:Python中的循环结构(上)
HerrFu
Python基础python开发语言学习
一、循环结构的应用场景及分类我们在编写程序时,一定会遇到需要重复执行某些指令的场景。举一个简单的例子,在前面讲分支结构时以游戏通关为例,如果第一关结束时分值不够则通关失败需要重新闯关,重新闯关这就是一个重复性的动作,类似的还有很多相似场景,代入编程中就可以使用循环来解决这类问题,这就是我们今天要讲的“循环结构”。所谓循环结构,就是程序中控制某条或某些指令重复执行的结构。在Python中构造循环结构
- 从零开始学Python系列课程第15课:range 方法详解
HerrFu
Python基础python开发语言学习
在循环结构上篇讲述for-in循环时,有一个range方法的知识点没给大家讲,本篇文章我们单独给大家做一个详细讲解。range方法的作用就是根据给定的start、stop、step三个参数,生成一个包含有规律整数的容器。以下是range的语法规则:range(start,stop,step)我们对这几个参数做出解释:可以理解start为左闭区间,stop为右开区间,step为等差序列的差;rang
- 人工智能 python入门体验课_Python系列课程——人工智能篇简单入门
weixin_39536427
人工智能python入门体验课
1、基础篇——基于Python的机器学习现在大热、为未来计算机科学发展方向的机器学习了解多少呢?下面推荐的这个内容比较适合小白,如果数学、模型理论基础不扎实也没关系,可以掌握Python编程语言基本可以轻松学习~例如利用Python编程语言实现线性分类器、支持向量机、朴素贝叶斯等经典机器学习模型来解决诸如肿瘤良恶性预测、手写体识别、泰坦尼克号生还预测等实际问题。并就模型本身泛化力问题(过拟合、欠拟
- 机器学习笔记03_机器学习基本概念(下)
三木今天学习了嘛
机器学习机器学习深度学习人工智能
学习视频:[中英字幕]吴恩达机器学习系列课程学习资料:https://github.com/fengdu78/Coursera-ML-AndrewNg-NotesGitHub不好用的话,我在CSDN资源区也上传了开源资料,0积分下载,期待和大家一起进步!文章目录12聚类Clustering12.1无监督学习UnsupervisedLearning12.2K-均值算法K-MeansAlgorithm
- 吴恩达《机器学习》1-4:无监督学习
不吃花椒的兔酱
机器学习机器学习学习笔记
一、无监督学习无监督学习就像你拿到一堆未分类的东西,没有标签告诉你它们是什么,然后你的任务是自己找出它们之间的关系或者分成不同的组,而不依赖于任何人给你关于这些东西的指导。以聚类为例,无监督学习算法可以将数据点分成具有相似特征的群组,而不需要提前告知每个数据点属于哪个群组。二、聚类算法将数据集中的对象分成具有相似特征或属性的组,这些组通常称为簇。参考资料:[中英字幕]吴恩达机器学习系列课程黄海广博
- 【李宏毅机器学习·学习笔记】Deep Learning General Guidance
MilkLeong
李宏毅机器学习Python机器学习机器学习深度学习学习
本节课可视为机器学习系列课程的一个前期攻略,这节课主要对MachineLearning的框架进行了简单的介绍;并以trainingdata上的loss大小为切入点,介绍了几种常见的在模型训练的过程中容易出现的情况。课程视频:Youtube:https://www.youtube.com/watch?v=WeHM2xpYQpw课程PPT:https://view.officeapps.live.co
- 机器学习比较好的视频资源
无敌三角猫
深度学习人工智能机器学习
吴恩达,经典入门课程。[中英字幕]吴恩达机器学习系列课程_哔哩哔哩_bilibiliwww.bilibili.com/video/BV164411b7dx?spm_id_from=333.999.0.0正在上传…重新上传取消[双语字幕]吴恩达深度学习deeplearning.ai_哔哩哔哩_bilibiliwww.bilibili.com/video/BV1FT4y1E74V?from=searc
- python网课人工智能,Python系列课程——人工智能篇简单入门
爬山小虎哥
python网课人工智能
1、基础篇——基于Python的机器学习>>>>>>现在大热、为未来计算机科学发展方向的机器学习了解多少呢?下面推荐的这个内容比较适合小白,如果数学、模型理论基础不扎实也没关系,可以掌握Python编程语言基本可以轻松学习~例如利用Python编程语言实现线性分类器、支持向量机、朴素贝叶斯等经典机器学习模型来解决诸如肿瘤良恶性预测、手写体识别、泰坦尼克号生还预测等实际问题。并就模型本身泛化力问题(
- 【经典】吴恩达——机器学习笔记001
superME1226
机器学习机器学习算法
【经典】吴恩达——机器学习笔记001机器学习(MachineLearning)笔记001学习地址:[中英字幕]吴恩达机器学习系列课程文字版参考及PPT来源:Coursera-ML-AndrewNg-Notes听从学长的建议,将吴恩达教授的DL和ML视频作为CV入门学习,本博客为个人学习笔记,旨在记录学习所得,欢迎小伙伴们一起交流学习,批评指正!第二章:【经典】吴恩达——机器学习笔记002课程总述M
- 【CV】吴恩达机器学习课程笔记第18章
Fannnnf
吴恩达机器学习课程笔记机器学习人工智能
本系列文章如果没有特殊说明,正文内容均解释的是文字上方的图片机器学习|Coursera吴恩达机器学习系列课程_bilibili目录18应用案例:照片OCR18-1问题描述与流程(pipeline)18-2滑动窗口(slidingwindows)分类器18-3获取大量数据和人工数据合成18-4上限分析:下一步要做流水线中的哪一个18应用案例:照片OCR18-1问题描述与流程(pipeline)1.找
- 吴恩达机器学习系列课程笔记——第五章:Octave教程(Octave Tutorial)
Lishier99
机器学习机器学习人工智能
提示:这章选学,可以去学python,第六节可以看看。5.1基本操作https://www.bilibili.com/video/BV164411b7dx?p=26本章学习以种编程语言:Octave语言。你能够用它来非常迅速地实现这门课中我们已经学过的,或者将要学的机器学习算法。过去我一直尝试用不同的编程语言来教授机器学习,包括C++、Java、Python、Numpy和Octave。我发现当使用
- 吴恩达机器学习系列课程笔记——第十四章:降维(Dimensionality Reduction)
Lishier99
机器学习机器学习人工智能算法学习
14.1动机一:数据压缩https://www.bilibili.com/video/BV164411b7dx?p=79这个视频,我想开始谈论第二种类型的无监督学习问题,称为降维。有几个不同的的原因使你可能想要做降维。一是数据压缩,后面我们会看了一些视频后,数据压缩不仅允许我们压缩数据,因而使用较少的计算机内存或磁盘空间,但它也让我们加快我们的学习算法。但首先,让我们谈论降维是什么。作为一种生动的
- 吴恩达机器学习系列课程笔记——第十一章:机器学习系统的设计(Machine Learning System Design)
Lishier99
机器学习机器学习人工智能算法
11.1首先要做什么https://www.bilibili.com/video/BV164411b7dx?p=65在接下来的视频中,我将谈到机器学习系统的设计。这些视频将谈及在设计复杂的机器学习系统时,你将遇到的主要问题。同时我们会试着给出一些关于如何巧妙构建一个复杂的机器学习系统的建议。下面的课程的的数学性可能不是那么强,但是我认为我们将要讲到的这些东西是非常有用的,可能在构建大型的机器学习系
- python数据分析、整理、汇总展示_python-数据分析与展示(Numpy、matplotlib、pandas)---2...
weixin_39525118
python数据分析整理汇总展示
笔记内容整理自mooc上北京理工大学嵩天老师python系列课程数据分析与展示,本人小白一枚,如有不对,多加指正1.python自带的图像库PIL1.1常用APIImage.open()Image.fromarray()im.save()convert('L')b.astype('uint8')(这个API用于处理后的数组改变元素的数据类型,科学计算python不同于C++等编程语言,操作之后,数
- 吴恩达机器学习课程笔记:监督学习、无监督学习
Uncertainty!!
机器学习基础监督学习无监督学习
1.吴恩达机器学习课程笔记:监督学习、无监督学习吴恩达机器学习系列课程:监督学习吴恩达机器学习系列课程:无监督学习仅作为个人学习笔记,若各位大佬发现错误请指正机器学习的学习算法:监督学习、无监督学习、半监督学习(监督与无监督的结合)、强化学习监督学习与无监督学习的根本区别:监督学习的数据既有特征又有标签,而非监督学习的数据中只有特征而没有标签。(例如:身高属于特征,标签是高或矮)左侧为监督学习针对
- 机器学习(正在更新)
小小怪将军!
机器学习机器学习深度学习
目录自己疑问-----容易错误的点:训练集、验证集、测试集训练集验证集测试集以下视频地址:[中英字幕]吴恩达机器学习系列课程_哔哩哔哩_bilibili第二章2.1线性回归2-2代价函数(类似误差一样)2.5-2.6梯度下降算法,梯度下降算法理解2.3线性回归的梯度下降/Batch梯度下降第四章(正规方程与梯度下降一样是为了求满足条件的(塞塔o))4.1多变量线性回归假设函数4.2多元(多变量)梯
- 机器学习 笔记(继续更新)
M有在认真学习
机器学习python
学习内容跟随“吴恩达机器学习系列课程”。目录1.具有一个特征的学习算法(linearregression线性回归),代价函数编辑的由来,等高图2.可以最小化代价函数的梯度下降法(gradientdescent),以及对于编辑、学习率编辑、导数项的通俗解释3.具有多个变量或特征的学习算法(multivariatelinearregression多元线性回归),它的假设函数和的迭代4.将gradien
- 吴恩达---机器学习的流程(持续更新)
M有在认真学习
机器学习回归逻辑回归
参考:吴恩达机器学习的视频视频链接:[中英字幕]吴恩达机器学习系列课程_哔哩哔哩_bilibili本文用于我自己的内容总结以及层次理解。学习流程:1.具有一个特征的学习算法(linearregression线性回归),代价函数编辑的由来,等高图2.可以最小化代价函数的梯度下降法(gradientdescent),以及对于编辑、学习率编辑、导数项的通俗解释3.具有多个变量或特征的学习算法(multi
- 机器学习算法笔记(1)——逻辑斯蒂回归Logistic处理二分类任务
念旧NiceJeo
机器学习算法笔记算法机器学习python可视化
逻辑斯蒂回归LogisticRegressor处理二分类任务一.逻辑斯蒂回归1.模型2.代价函数(损失函数)3.优化算法二.代码实现1.二维二分类2.多维二分类本系列为观看吴恩达老师的[中英字幕]吴恩达机器学习系列课程做的课堂笔记。图片来自视频截图。不得不说,看了老师的视频真的学到了很多。即使数学不好的同志们也可以看懂,真的可谓是细致入微了。一.逻辑斯蒂回归1.模型学过深度学习的同志们对这张图一定
- 【机器学习(九)】大数据集及其梯度下降算法
趴抖
机器学习算法人工智能
声明:本文是以吴恩达机器学习系列课程为学习对象而作的学习笔记。本文对应P102-P105。大数据集假定你的训练集的大小m为100000000。如果你想训练一个线性回归模型或是一个逻辑回归模型。其梯度下降规则如下:当m的值为100000000时,就需要对一亿项进行求和。这是为了计算导数项以及演算单步下降。因为计算超过一亿项的代价太高了。我们容易思考:为什么不能在这一亿项中取一千个样本的子集,然后仅用
- 【机器学习(八)】神经网络进阶
趴抖
机器学习神经网络逻辑回归
声明:本文是以吴恩达机器学习系列课程为学习对象而作的学习笔记。本文对应P50-P56。代价函数假设我们有一个与下图类似的神经网络结构,再假设我们有一个像这样的训练集,其中有m组训练样本(x(i),y(I))。用L来表示神经网络结构的总层数:我们将会考虑两种分类问题:二元分类问题这里的y只能为0或1,在这种情况下,我们会有一个输出单元即K=1。同时神经网络的输出结果h(x)会是一个实数多类别分类问题
- 【机器学习(四)】分类问题与logistic回归模型
趴抖
机器学习回归分类
声明:本文是以吴恩达机器学习系列课程为学习对象而作的学习笔记。本文对应P32-P36、P38。情景引入在前面几篇文章中,我们提到了判断邮件是否为垃圾邮件的例子,以及良性与恶性肿瘤的例子。在所有的这些问题中,我们尝试预测的变量y,都是可以有两个取值的变量——0或1。我们用0来表示的这一类还可以叫做”负类“,用1来表示的这一类还可以叫做正类。现在我们要从只包含0和1两类的分类问题开始。假设陈述——lo
- 【机器学习(六)】过拟合问题及正则化
趴抖
机器学习人工智能逻辑回归
声明:本文是以吴恩达机器学习系列课程为学习对象而作的学习笔记。本文对应P39-P42。过拟合问题下面是一个用线性回归来预测房价的例子:第一种拟合没有很好地拟合训练集,称其为欠拟合。或者说,这个算法具有高偏差。第二种恰当地拟合了训练集。第三种拟合似乎很好地拟合了训练集,代价函数实际上可能非常接近于0,毕竟它通过了所有的数据点,但这是一条扭曲的,不停上下波动的曲线。事实上我们并不认为它是一个预测房价的
- java的(PO,VO,TO,BO,DAO,POJO)
Cb123456
VOTOBOPOJODAO
转:
http://www.cnblogs.com/yxnchinahlj/archive/2012/02/24/2366110.html
-------------------------------------------------------------------
O/R Mapping 是 Object Relational Mapping(对象关系映
- spring ioc原理(看完后大家可以自己写一个spring)
aijuans
spring
最近,买了本Spring入门书:spring In Action 。大致浏览了下感觉还不错。就是入门了点。Manning的书还是不错的,我虽然不像哪些只看Manning书的人那样专注于Manning,但怀着崇敬 的心情和激情通览了一遍。又一次接受了IOC 、DI、AOP等Spring核心概念。 先就IOC和DI谈一点我的看法。IO
- MyEclipse 2014中Customize Persperctive设置无效的解决方法
Kai_Ge
MyEclipse2014
高高兴兴下载个MyEclipse2014,发现工具条上多了个手机开发的按钮,心生不爽就想弄掉他!
结果发现Customize Persperctive失效!!
有说更新下就好了,可是国内Myeclipse访问不了,何谈更新...
so~这里提供了更新后的一下jar包,给大家使用!
1、将9个jar复制到myeclipse安装目录\plugins中
2、删除和这9个jar同包名但是版本号较
- SpringMvc上传
120153216
springMVC
@RequestMapping(value = WebUrlConstant.UPLOADFILE)
@ResponseBody
public Map<String, Object> uploadFile(HttpServletRequest request,HttpServletResponse httpresponse) {
try {
//
- Javascript----HTML DOM 事件
何必如此
JavaScripthtmlWeb
HTML DOM 事件允许Javascript在HTML文档元素中注册不同事件处理程序。
事件通常与函数结合使用,函数不会在事件发生前被执行!
注:DOM: 指明使用的 DOM 属性级别。
1.鼠标事件
属性  
- 动态绑定和删除onclick事件
357029540
JavaScriptjquery
因为对JQUERY和JS的动态绑定事件的不熟悉,今天花了好久的时间才把动态绑定和删除onclick事件搞定!现在分享下我的过程。
在我的查询页面,我将我的onclick事件绑定到了tr标签上同时传入当前行(this值)参数,这样可以在点击行上的任意地方时可以选中checkbox,但是在我的某一列上也有一个onclick事件是用于下载附件的,当
- HttpClient|HttpClient请求详解
7454103
apache应用服务器网络协议网络应用Security
HttpClient 是 Apache Jakarta Common 下的子项目,可以用来提供高效的、最新的、功能丰富的支持 HTTP 协议的客户端编程工具包,并且它支持 HTTP 协议最新的版本和建议。本文首先介绍 HTTPClient,然后根据作者实际工作经验给出了一些常见问题的解决方法。HTTP 协议可能是现在 Internet 上使用得最多、最重要的协议了,越来越多的 Java 应用程序需
- 递归 逐层统计树形结构数据
darkranger
数据结构
将集合递归获取树形结构:
/**
*
* 递归获取数据
* @param alist:所有分类
* @param subjname:对应统计的项目名称
* @param pk:对应项目主键
* @param reportList: 最后统计的结果集
* @param count:项目级别
*/
public void getReportVO(Arr
- 访问WEB-INF下使用frameset标签页面出错的原因
aijuans
struts2
<frameset rows="61,*,24" cols="*" framespacing="0" frameborder="no" border="0">
- MAVEN常用命令
avords
Maven库:
http://repo2.maven.org/maven2/
Maven依赖查询:
http://mvnrepository.com/
Maven常用命令: 1. 创建Maven的普通java项目: mvn archetype:create -DgroupId=packageName 
- PHP如果自带一个小型的web服务器就好了
houxinyou
apache应用服务器WebPHP脚本
最近单位用PHP做网站,感觉PHP挺好的,不过有一些地方不太习惯,比如,环境搭建。PHP本身就是一个网站后台脚本,但用PHP做程序时还要下载apache,配置起来也不太很方便,虽然有好多配置好的apache+php+mysq的环境,但用起来总是心里不太舒服,因为我要的只是一个开发环境,如果是真实的运行环境,下个apahe也无所谓,但只是一个开发环境,总有一种杀鸡用牛刀的感觉。如果php自己的程序中
- NoSQL数据库之Redis数据库管理(list类型)
bijian1013
redis数据库NoSQL
3.list类型及操作
List是一个链表结构,主要功能是push、pop、获取一个范围的所有值等等,操作key理解为链表的名字。Redis的list类型其实就是一个每个子元素都是string类型的双向链表。我们可以通过push、pop操作从链表的头部或者尾部添加删除元素,这样list既可以作为栈,又可以作为队列。
&nbs
- 谁在用Hadoop?
bingyingao
hadoop数据挖掘公司应用场景
Hadoop技术的应用已经十分广泛了,而我是最近才开始对它有所了解,它在大数据领域的出色表现也让我产生了兴趣。浏览了他的官网,其中有一个页面专门介绍目前世界上有哪些公司在用Hadoop,这些公司涵盖各行各业,不乏一些大公司如alibaba,ebay,amazon,google,facebook,adobe等,主要用于日志分析、数据挖掘、机器学习、构建索引、业务报表等场景,这更加激发了学习它的热情。
- 【Spark七十六】Spark计算结果存到MySQL
bit1129
mysql
package spark.examples.db
import java.sql.{PreparedStatement, Connection, DriverManager}
import com.mysql.jdbc.Driver
import org.apache.spark.{SparkContext, SparkConf}
object SparkMySQLInteg
- Scala: JVM上的函数编程
bookjovi
scalaerlanghaskell
说Scala是JVM上的函数编程一点也不为过,Scala把面向对象和函数型编程这两种主流编程范式结合了起来,对于熟悉各种编程范式的人而言Scala并没有带来太多革新的编程思想,scala主要的有点在于Java庞大的package优势,这样也就弥补了JVM平台上函数型编程的缺失,MS家.net上已经有了F#,JVM怎么能不跟上呢?
对本人而言
- jar打成exe
bro_feng
java jar exe
今天要把jar包打成exe,jsmooth和exe4j都用了。
遇见几个问题。记录一下。
两个软件都很好使,网上都有图片教程,都挺不错。
首先肯定是要用自己的jre的,不然不能通用,其次别忘了把需要的lib放到classPath中。
困扰我很久的一个问题是,我自己打包成功后,在一个同事的没有装jdk的电脑上运行,就是不行,报错jvm.dll为无效的windows映像,如截图
最后发现
- 读《研磨设计模式》-代码笔记-策略模式-Strategy
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
策略模式定义了一系列的算法,并将每一个算法封装起来,而且使它们还可以相互替换。策略模式让算法独立于使用它的客户而独立变化
简单理解:
1、将不同的策略提炼出一个共同接口。这是容易的,因为不同的策略,只是算法不同,需要传递的参数
- cmd命令值cvfM命令
chenyu19891124
cmd
cmd命令还真是强大啊。今天发现jar -cvfM aa.rar @aaalist 就这行命令可以根据aaalist取出相应的文件
例如:
在d:\workspace\prpall\test.java 有这样一个文件,现在想要将这个文件打成一个包。运行如下命令即可比如在d:\wor
- OpenJWeb(1.8) Java Web应用快速开发平台
comsci
java框架Web项目管理企业应用
OpenJWeb(1.8) Java Web应用快速开发平台的作者是我们技术联盟的成员,他最近推出了新版本的快速应用开发平台 OpenJWeb(1.8),我帮他做做宣传
OpenJWeb快速开发平台以快速开发为核心,整合先进的java 开源框架,本着自主开发+应用集成相结合的原则,旨在为政府、企事业单位、软件公司等平台用户提供一个架构透
- Python 报错:IndentationError: unexpected indent
daizj
pythontab空格缩进
IndentationError: unexpected indent 是缩进的问题,也有可能是tab和空格混用啦
Python开发者有意让违反了缩进规则的程序不能通过编译,以此来强制程序员养成良好的编程习惯。并且在Python语言里,缩进而非花括号或者某种关键字,被用于表示语句块的开始和退出。增加缩进表示语句块的开
- HttpClient 超时设置
dongwei_6688
httpclient
HttpClient中的超时设置包含两个部分:
1. 建立连接超时,是指在httpclient客户端和服务器端建立连接过程中允许的最大等待时间
2. 读取数据超时,是指在建立连接后,等待读取服务器端的响应数据时允许的最大等待时间
在HttpClient 4.x中如下设置:
HttpClient httpclient = new DefaultHttpC
- 小鱼与波浪
dcj3sjt126com
一条小鱼游出水面看蓝天,偶然间遇到了波浪。 小鱼便与波浪在海面上游戏,随着波浪上下起伏、汹涌前进。 小鱼在波浪里兴奋得大叫:“你每天都过着这么刺激的生活吗?简直太棒了。” 波浪说:“岂只每天过这样的生活,几乎每一刻都这么刺激!还有更刺激的,要有潮汐变化,或者狂风暴雨,那才是兴奋得心脏都会跳出来。” 小鱼说:“真希望我也能变成一个波浪,每天随着风雨、潮汐流动,不知道有多么好!” 很快,小鱼
- Error Code: 1175 You are using safe update mode and you tried to update a table
dcj3sjt126com
mysql
快速高效用:SET SQL_SAFE_UPDATES = 0;下面的就不要看了!
今日用MySQL Workbench进行数据库的管理更新时,执行一个更新的语句碰到以下错误提示:
Error Code: 1175
You are using safe update mode and you tried to update a table without a WHERE that
- 枚举类型详细介绍及方法定义
gaomysion
enumjavaee
转发
http://developer.51cto.com/art/201107/275031.htm
枚举其实就是一种类型,跟int, char 这种差不多,就是定义变量时限制输入的,你只能够赋enum里面规定的值。建议大家可以看看,这两篇文章,《java枚举类型入门》和《C++的中的结构体和枚举》,供大家参考。
枚举类型是JDK5.0的新特征。Sun引进了一个全新的关键字enum
- Merge Sorted Array
hcx2013
array
Given two sorted integer arrays nums1 and nums2, merge nums2 into nums1 as one sorted array.
Note:You may assume that nums1 has enough space (size that is
- Expression Language 3.0新特性
jinnianshilongnian
el 3.0
Expression Language 3.0表达式语言规范最终版从2013-4-29发布到现在已经非常久的时间了;目前如Tomcat 8、Jetty 9、GlasshFish 4已经支持EL 3.0。新特性包括:如字符串拼接操作符、赋值、分号操作符、对象方法调用、Lambda表达式、静态字段/方法调用、构造器调用、Java8集合操作。目前Glassfish 4/Jetty实现最好,对大多数新特性
- 超越算法来看待个性化推荐
liyonghui160com
超越算法来看待个性化推荐
一提到个性化推荐,大家一般会想到协同过滤、文本相似等推荐算法,或是更高阶的模型推荐算法,百度的张栋说过,推荐40%取决于UI、30%取决于数据、20%取决于背景知识,虽然本人不是很认同这种比例,但推荐系统中,推荐算法起的作用起的作用是非常有限的。
就像任何
- 写给Javascript初学者的小小建议
pda158
JavaScript
一般初学JavaScript的时候最头痛的就是浏览器兼容问题。在Firefox下面好好的代码放到IE就不能显示了,又或者是在IE能正常显示的代码在firefox又报错了。 如果你正初学JavaScript并有着一样的处境的话建议你:初学JavaScript的时候无视DOM和BOM的兼容性,将更多的时间花在 了解语言本身(ECMAScript)。只在特定浏览器编写代码(Chrome/Fi
- Java 枚举
ShihLei
javaenum枚举
注:文章内容大量借鉴使用网上的资料,可惜没有记录参考地址,只能再传对作者说声抱歉并表示感谢!
一 基础 1)语法
枚举类型只能有私有构造器(这样做可以保证客户代码没有办法新建一个enum的实例)
枚举实例必须最先定义
2)特性
&nb
- Java SE 6 HotSpot虚拟机的垃圾回收机制
uuhorse
javaHotSpotGC垃圾回收VM
官方资料,关于Java SE 6 HotSpot虚拟机的garbage Collection,非常全,英文。
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
Java SE 6 HotSpot[tm] Virtual Machine Garbage Collection Tuning
&