E. Natasha, Sasha and the Prefix Sums

http://codeforces.com/contest/1204/problem/E

给定n个 1 m个 -1的全排

求所有排列的$f(amax(0,max_{1il} \sum_{j=1}^{i} a_{j} )$之和

组合数,枚举

#include 

using namespace std;

typedef long long ll;
const ll MOD = 998244853;

int n, m;
ll C[4002][4002];
ll sum;
ll realSum;
ll ans;

void init()
{
    for(int i=0; i<=4000; i++) C[i][0] = C[i][i] = 1;
    for(int i=1; i<=4000; i++)
    {
        for(int j=1; j)
        {
            C[i][j] = (C[i-1][j-1] + C[i-1][j])%MOD;
        }
    }
}

int main()
{
    init();
    scanf("%d%d", &n, &m);
    for(int i=n; i>=1 && i>=n-m; i--)///枚举前缀和最大为i时
    {
        sum = (C[n+m][n-i] - realSum + MOD) % MOD;
///前缀和最大为i的排列个数,大概是说n+m中任选n-i个位置放多余的1,
///然后前i个位置放1,后面的位置放-1,此时前缀最大最小为i
ans = (ans+(sum * i) % MOD)%MOD; realSum = (realSum + sum)%MOD; } printf("%lld\n", ans); }

 

转载于:https://www.cnblogs.com/liulex/p/11387460.html

你可能感兴趣的:(E. Natasha, Sasha and the Prefix Sums)