在“横纵式”教学法中,纵向概要介绍模型的基本代码结构和极简实现方案
#加载飞桨和相关类库
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Linear
import numpy as np
import os
from PIL import Image
# 如果~/.cache/paddle/dataset/mnist/目录下没有MNIST数据,API会自动将MINST数据下载到该文件夹下
# 设置数据读取器,读取MNIST数据训练集
trainset = paddle.dataset.mnist.train()
# 包装数据读取器,每次读取的数据数量设置为batch_size=8
train_reader = paddle.batch(trainset, batch_size=8)
读取第一个批次的数据内容,观察打印结果。
# 以迭代的形式读取数据
for batch_id, data in enumerate(train_reader()):
# 获得图像数据,并转为float32类型的数组
img_data = np.array([x[0] for x in data]).astype('float32')
# 获得图像标签数据,并转为float32类型的数组
label_data = np.array([x[1] for x in data]).astype('float32')
# 打印数据形状
print("图像数据形状和对应数据为:", img_data.shape, img_data[0])
print("图像标签形状和对应数据为:", label_data.shape, label_data[0])
break
print("\n打印第一个batch的第一个图像,对应标签数字为{}".format(label_data[0]))
# 显示第一batch的第一个图像
import matplotlib.pyplot as plt
img = np.array(img_data[0]+1)*127.5
img = np.reshape(img, [28, 28]).astype(np.uint8)
plt.figure("Image") # 图像窗口名称
plt.imshow(img)
plt.axis('on') # 关掉坐标轴为 off
plt.title('image') # 图像题目
plt.show()
从打印结果看,从数据加载器train_reader()中读取一次数据,可以得到形状为(8, 784)的图像数据和形状为(8,)的标签数据。其中,形状中的数字8与设置的batch_size大小对应,784为MINIST数据集中每个图像的像素大小(28*28)。
此外,从打印的图像数据来看,图像数据的范围是[-1, 1],表明这是已经完成图像归一化后的图像数据,并且空白背景部分的值是-1。将图像数据反归一化,并使用matplotlib工具包将其显示出来,如图2 所示。可以看到图片显示的数字是5,和对应标签数字一致。
在房价预测深度学习任务中,我们使用了单层且线性变换的模型,取得了理想的预测效果。在手写数字识别任务中,我们依然使用这个模型预测输入的图形数字值。其中,模型的输入为784维(28*28)数据,输出为1维数据。
说明:
事实上,采用只有一层的简单网络(对输入求加权和)时并没有处理位置关系信息,因此可以猜测出此模型的预测效果有限。在后续优化环节中,介绍的卷积神经网络则更好的考虑了这种位置关系信息,模型的预测效果也会显著提升。
# 定义mnist数据识别网络结构,同房价预测网络
class MNIST(fluid.dygraph.Layer):
def __init__(self):
super(MNIST, self).__init__()
# 定义一层全连接层,输出维度是1,激活函数为None,即不使用激活函数
self.fc = Linear(input_dim=784, output_dim=1, act=None)
# 定义网络结构的前向计算过程
def forward(self, inputs):
outputs = self.fc(inputs)
return outputs
训练配置需要先生成模型实例(设为“训练”状态),再设置优化算法和学习率(使用随机梯度下降SGD,学习率设置为0.001),实现方法如下所示。
# 定义飞桨动态图工作环境
with fluid.dygraph.guard():
# 声明网络结构
model = MNIST()
# 启动训练模式
model.train()
# 定义数据读取函数,数据读取batch_size设置为16
train_loader = paddle.batch(paddle.dataset.mnist.train(), batch_size=16)
# 定义优化器,使用随机梯度下降SGD优化器,学习率设置为0.001
optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.001, parameter_list=model.parameters())
# 通过with语句创建一个dygraph运行的context
# 动态图下的一些操作需要在guard下进行
with fluid.dygraph.guard():
model = MNIST()
model.train()
train_loader = paddle.batch(paddle.dataset.mnist.train(), batch_size=16)
optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.001, parameter_list=model.parameters())
EPOCH_NUM = 10
for epoch_id in range(EPOCH_NUM):
for batch_id, data in enumerate(train_loader()):
#准备数据,格式需要转换成符合框架要求
image_data = np.array([x[0] for x in data]).astype('float32')
label_data = np.array([x[1] for x in data]).astype('float32').reshape(-1, 1)
# 将数据转为飞桨动态图格式
image = fluid.dygraph.to_variable(image_data)
label = fluid.dygraph.to_variable(label_data)
#前向计算的过程
predict = model(image)
#计算损失,取一个批次样本损失的平均值
loss = fluid.layers.square_error_cost(predict, label)
avg_loss = fluid.layers.mean(loss)
#每训练了1000批次的数据,打印下当前Loss的情况
if batch_id !=0 and batch_id % 1000 == 0:
print("epoch: {}, batch: {}, loss is: {}".format(epoch_id, batch_id, avg_loss.numpy()))
#后向传播,更新参数的过程
avg_loss.backward()
optimizer.minimize(avg_loss)
model.clear_gradients()
# 保存模型
fluid.save_dygraph(model.state_dict(), 'mnist')
模型测试的主要目的是验证训练好的模型是否能正确识别出数字,包括如下四步:
在模型测试之前,需要先从’./work/example_0.jpg’文件中读取样例图片,并进行归一化处理。
# 导入图像读取第三方库
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
import cv2
import numpy as np
# 读取图像
img1 = cv2.imread('./work/example_0.png')
example = mpimg.imread('./work/example_0.png')
# 显示图像
plt.imshow(example)
plt.show()
im = Image.open('./work/example_0.png').convert('L')
print(np.array(im).shape)
im = im.resize((28, 28), Image.ANTIALIAS)
plt.imshow(im)
plt.show()
print(np.array(im).shape)
# 读取一张本地的样例图片,转变成模型输入的格式
def load_image(img_path):
# 从img_path中读取图像,并转为灰度图
im = Image.open(img_path).convert('L')
print(np.array(im))
im = im.resize((28, 28), Image.ANTIALIAS)
im = np.array(im).reshape(1, -1).astype(np.float32)
# 图像归一化,保持和数据集的数据范围一致
im = 1 - im / 127.5
return im
# 定义预测过程
with fluid.dygraph.guard():
model = MNIST()
params_file_path = 'mnist'
img_path = './work/example_0.png'
# 加载模型参数
model_dict, _ = fluid.load_dygraph("mnist")
model.load_dict(model_dict)
# 灌入数据
model.eval()
tensor_img = load_image(img_path)
result = model(fluid.dygraph.to_variable(tensor_img))
# 预测输出取整,即为预测的数字,打印结果
print("本次预测的数字是", result.numpy().astype('int32'))
[[255 255 255 ... 255 255 255]
[255 255 255 ... 255 255 255]
[255 255 255 ... 255 255 255]
...
[255 255 255 ... 255 255 255]
[255 255 255 ... 255 255 255]
[255 255 255 ... 255 255 255]]
本次预测的数字是 [[4]]