高尔夫球场,长期以来的高端社交地,但其存在的背后,却是对资源环境的侵袭。不仅大量占用土地资源、耗费水资源,而且在维护草坪的时候大量使用化肥农药,会造成严重污染。
有多严重呢?
曾任江苏省副省长的徐鸣此前接受《中国经济周刊》专访给出了一个对比:
“一个高尔夫球场的污染比一座普通工厂的污染还要严重。”
从2004年开始,有关部门就开始出台一系列政策限制球场建设,并在2017年前后开展了专项清理整治。
但整治效果该如何核查?
球场相对分散,且占地面积比较大, 通过遥感图像来检测,是较优方案,高分辨率光学遥感影像的普及也为场检测提供了有力数据支持。
哪怕这些数据都有,检测起来却不容易。
下面就是一张遥感图像,忽略绿框,你能发现其中的高尔夫球场有多少,都在哪吗?
一个熟练解译人员从这样的遥感图像中检测出来所有的高尔夫球场,需要15分钟左右。
而现在,深度学习技术改变了这项工作的面貌。
只需10秒,就能够在这样的图中,自动检测出高尔夫球场。
相比之下,效率提高90倍。识别的准确度也达到了84%。
这并不是个案特例,而是整个应用方向的集体提升,正切切实实发生在中科院遥感地球所。
这一跃迁是怎么发生的?又是一个怎样的过程?
AI在图像识别领域中已经颇有建树许多年,为什么到现在能力才体现出来?
想要回答这些问题,需要先回答——
为什么原来处理遥感图像很慢?
利用遥感图像监测地表,是一个持续的过程。中科院遥感地球所研究人员说,其中最大的难点就在于,同一个地方的环境和气候,每年都会发生变化。这会对理解遥感图像的算法造成极大的影响。
最直接的体现就是,原本针对这些地方构建的算法,过了一年之后,就要有针对性地调优,适应这些变化,不然就会“罢工”。而且, 这些算法都与人的经验有很强的关联性,如果设计算法的人离职,整个算法就难以为继了。
需要注意的是,这些算法并不是自动化的,仍旧需要人工去配合。中国960万平方公里,想要完成一遍,至少需要千余人集中工作2到3个月。
怎么办?可以用深度学习。现在, 遥感所是这样做的:
针对一个地方构建样本库,然后基于样本库中的图像训练深度学习模型。
第二年,这一地方的环境和气候发生变化,只需要把新的图像加进样本库,然后重新把模型训练一遍就可以了。
同时,这样也能够减少对人的依赖,模型的调整不再受限于专家经验,而是依靠数据的变化。
而且,数据越来越多,也不再是累赘,而是提高模型精度的“养料”。
虽然现在看来,这一切都很高效且非常简单。但在从传统的人工+算法模式到现在深度学习的模式切换中,还经历了不少困难。
用AI理解遥感图像,有什么难的?
图像识别,可以说是当前AI领域比较成熟的技术了,各种用于图像理解的深度学习模型层出不穷,而且在特定领域已达到了人类同等水准。
但问题在于,这些深度模型,主要是针对自然图像的,如果直接用于理解遥感图像效果就会大打折扣。因为这两类图像之间有很大的差别。
首先,遥感图像波段比较多,除了自然图像的RGB三个波段之外,遥感图像至少还要多出一个近红外波段,一些卫星获取的遥感影像有8个波段,高光谱图像甚至有多达200多个波段。
其次,图像的尺度差异也非常大,与自然图像中利用尺度金字塔进行多尺度的识别相比,遥感图像的尺度差异甚至要达到1:30 以上,才能较好地识别各个目标地物。
第三,有局部空间特征失真的问题。自然图像的失真,主要是因为传感器的边缘失真和镜头失真,整体是可控的。但遥感图像成像的失真,是由于在图像获取中的误差产生的,相对来说是不可控的。
这些问题的存在,让现有的深度学习算法很难直接应用到遥感图像理解任务中。不仅模型需要进一步优化,还需要框架提供支持:不仅要在遥感影像读入方面提供多波段的支持,还需要添加针对遥感影像的图像增强算法,考虑到多波段的颜色增强,以及局部空间特征变形增强等等方面。
这些,正是百度在其深度学习框架PaddlePaddle中所做的事情,借助这一框架,中科院遥感地球所,也正在完成一轮新的技术迭代。
应用正越来越广泛。
具体到我们一开始提到的高尔夫球场识别问题,中科院遥感所的研究人员借助PaddlePaddle框架的支持,使用了Faster R-CNN目标检测模型。
在专业、标准的高尔夫球场遥感数据集中,只需要10秒,就能够检测出遥感图像中的所有球场。
用人工+算法来识别,则需要15分钟。
深度学习新方法让工作效率提高了90倍,检出准确率也能够达到84%。
而且,深度学习并不仅仅只是用于自动化检测高尔夫球场,还正在被用于理解遥感图像中的机场,建设在山区中的风力和光伏发电站。
借助深度学习技术,研究人员能够根据遥感图像快速识别出一个地区有多少太阳能面板,就有可能对这一地区能够发多少电有清晰的预估,并为电网建设提供决策支持,避免“有电没网”或者“有网没电”的窘境。
根据国家能源局给出的数据,仅2018年,光伏发电就浪费了54.9亿度,相当于200多万家庭一年的用电量(按一家庭每月用电200度来计算)。
这背后的社会价值可见一斑。而且,理解遥感图像,只是PaddlePaddle解决实际问题的一个范例。
在计算机视觉领域,这个框架已经能够支持模型完成图像分类、目标检测、图像语义分割、场景文字识别、图像生成、人体关键点检测、视频分类、度量学习等任务。
最后,附上一篇使用指南。如果你感兴趣,可以收藏观看~
计算机视觉八大任务全概述:PaddlePaddle工程师详解热门视觉模型
今日是二十四节气中的谷雨,小编为大家带来了深度学习理解遥感图像技术保护土地和水资源的故事。
看完本文:
是不是有很多感慨想要告诉大家?
是不是有土地需要深度学习技术去保护?
是不是有更多的深度学习应用故事要告诉小编?
如果是,请在留言区写下你想说的话。
点赞排名前十的同学送新logo蓝色T恤一件,让我们一起走在春天的土地上,感受技术带为自然环境焕发的崭新生机~