该模块可以插入到现有的CNN网络结构中,优点是可以提高整体的性能,缺点是参数多,计算量大
写此文章只为自己日后回顾
首先base cnn 为resnet50 ,插入在block3之后,模块的输入和输出都不变,这也是可以即插即用的原因。
首先输入为【B,H,W,C】 先对输入使用1X1大小的卷积核做卷积,降低输入通道。减少计算量。然后把【B,H,W,C】reshape 成[B,HW,C],然后两个相乘(其中一个transpose),这样可以得到【B,HW,HW】,可以得到图像像素和其他位置的相关性,然后将结果做softmax 处理,突出共性,然后将softmax得到的记过和【B,HW,C】矩阵相乘,将权重应用到输入上,然后在和原始输入相加,就完成位置注意力机制。
这个模块,可以让模型把注意力放在要识别的物体上。详细代码如下:
def nonlocal_dot(net, depth, embed=True, softmax=False, maxpool=2, scope=None):
""" Implementation of the non-local block in its various forms.
See "Non-local Neural Networks" by
Xiaolong Wang, Ross Girshick, Abhinav Gupta, Kaiming He
https://arxiv.org/pdf/1711.07971.pdf
Args:
- `net`: The symbolic input into the block, a (B,H,W,C) Tensor.
- `depth`: The number of channels in which to execute the non-local operation.
- `embed`: Whether or not use the "embedded version" as in Sec.3.2
- `softmax`: Whether or not to use the softmax operation which makes it
equivalent to soft-attention.
- `maxpool`: How large of a max-pooling (Sec.3.3) to use to help reduce
the computational burden. Default is 2, use `False` for none.
- `scope`: An optional scope for all created variables.
Returns:
The symbolic output of the non-local block operation.
Note:
The final BatchNorm's gamma is initialized to zero, so as to make this a
no-op (skip) at initialization, as described in Sec.4.1.
"""
with tf.variable_scope(scope, 'nonlocal', values=[net]) as sc:
with slim.arg_scope([slim.conv2d], normalizer_fn=None):
if embed:
#change input channels to 512
a = conv2d_same(net, depth, 1, stride=1, scope='embA')
b = conv2d_same(net, depth, 1, stride=1, scope='embB')
else:
a, b = net, net
g_orig = g = conv2d_same(net, depth, 1, stride=1, scope='g')
if maxpool is not False and maxpool > 1:
b = slim.max_pool2d(b, [maxpool, maxpool], stride=maxpool, scope='pool')
g = slim.max_pool2d(g, [maxpool, maxpool], stride=maxpool, scope='pool')
# Flatten from (B,H,W,C) to (B,HW,C) or similar
a_flat = tf.reshape(a, [tf.shape(a)[0], -1, tf.shape(a)[-1]])
b_flat = tf.reshape(b, [tf.shape(b)[0], -1, tf.shape(b)[-1]])
g_flat = tf.reshape(g, [tf.shape(g)[0], -1, tf.shape(g)[-1]])
a_flat.set_shape([8, a.shape[1] * a.shape[2] if None not in a.shape[1:3] else None, a.shape[-1]])
b_flat.set_shape([8, b.shape[1] * b.shape[2] if None not in b.shape[1:3] else None, b.shape[-1]])
g_flat.set_shape([8, g.shape[1] * g.shape[2] if None not in g.shape[1:3] else None, g.shape[-1]])
# Compute f(a, b) -> (B,HW,HW) 计算相似性
a_flat_new = tf.gather(a_flat,0)
b_flat_new = tf.gather(b_flat,0)
print("&&&&&&&&&&&&&&&&&&&&&&&&&")
print(a_flat_new.shape) #[49,512]
print(b_flat_new.shape) #[16,512]
f0 = tf.matmul(a_flat_new, tf.transpose(b_flat_new, [1,0]))
f0 = tf.reshape(f0,[-1,f0.shape[0],f0.shape[1]])
print("f0.shape") #[1,49,16]
print(f0.shape)
a_flat_new = tf.gather(a_flat,1)
b_flat_new = tf.gather(b_flat,1)
print("&&&&&&&&&&&&&&&&&&&&&&&&&")
print(a_flat_new.shape)
print(b_flat_new.shape)
f1 = tf.matmul(a_flat_new, tf.transpose(b_flat_new, [1,0]))
f1 = tf.reshape(f1,[-1,f1.shape[0],f1.shape[1]])
print("f1.shape")
print(f1.shape)
f = tf.concat([f0,f1],axis=0)
print("f.shape")
print(f.shape)
for i in range(6):
i = i+2
a_flat_new = tf.gather(a_flat,i)
b_flat_new = tf.gather(b_flat,i)
print("&&&&&&&&&&&&&&&&&&&&&&&&&")
print(a_flat_new.shape)
print(b_flat_new.shape)
f0 = tf.matmul(a_flat_new, tf.transpose(b_flat_new, [1,0]))
f0 = tf.reshape(f0,[-1,f0.shape[0],f0.shape[1]])
print("f0.shape")
print(f0.shape)
f =tf.concat([f,f0],axis=0)
print("f.shape")
print(f.shape) #[8,49,16]
if softmax:
f = tf.nn.softmax(f)
else:
f = f / tf.cast(tf.shape(f)[-1], tf.float32)
# Compute f * g ("self-attention") -> (B,HW,C)
print("********************")
print(g_flat.shape) #[8,16,512]
f_flat_new = tf.gather(f,0)
g_flat_new = tf.gather(g_flat,0)
print("###################")
print(f_flat_new.shape) #[49,16]
print(g_flat_new.shape) #[16,512]
f0 = tf.matmul(f_flat_new, g_flat_new)
f0 = tf.reshape(f0,[-1,f0.shape[0],f0.shape[1]])
print("f0.shape") #[1,49,16]
print(f0.shape)
f_flat_new = tf.gather(f,1)
g_flat_new = tf.gather(g_flat,1)
print("##########################")
print(f_flat_new.shape)
print(g_flat_new.shape)
f1 = tf.matmul(f_flat_new, g_flat_new)
f1 = tf.reshape(f1,[-1,f1.shape[0],f1.shape[1]])
print("f1.shape")
print(f1.shape)
f_new = tf.concat([f0,f1],axis=0)
print("f_new.shape")
print(f_new.shape)
for i in range(6):
i = i+2
f_flat_new = tf.gather(f,i)
g_flat_new = tf.gather(g_flat,i)
print("&&&&&&&&&&&&&&&&&&&&&&&&&")
print(f_flat_new.shape)
print(g_flat_new.shape)
f0 = tf.matmul(f_flat_new, g_flat_new)
f0 = tf.reshape(f0,[-1,f0.shape[0],f0.shape[1]])
print("f0.shape")
print(f0.shape)
f_new =tf.concat([f_new,f0],axis=0)
print("f_new.shape")
print(f_new.shape) #[8,49,16]
#fg = tf.matmul(f, g_flat)
# Expand and fix the static shapes TF lost track of.
fg = tf.reshape(f_new, tf.shape(g_orig))
# fg.set_shape(g.shape) # NOTE: This actually appears unnecessary.
# Go back up to the original depth, add residually, zero-init.
#with slim.arg_scope([slim.conv2d],
# weights_initializer=tf.zeros_initializer()):
with slim.arg_scope([slim.batch_norm], param_initializers={'gamma': tf.zeros_initializer()}):
fg = conv2d_same(fg, net.shape[-1], 1, stride=1, scope='fgup')
net = net + fg
return slim.utils.collect_named_outputs(None, sc.name, net)