Learning Opencv 3 —— 十五章 背景去除 Background Subtraction (二)

更复杂的背景去除方法——codebook

具体算法介绍可以参考 CodeBook 算法的百度百科介绍。

这种模型能很好地处理时间起伏,缺点是需要消耗大量的内存。CodeBook算法为当前图像的每一个像素建立一个CodeBook(CB)结构,每个CodeBook结构又由多个CodeWord(CW)组成。

CB和CW的形式如下:

CB={CW1,CW2,…CWn,t}

CW={lHigh,lLow,max,min,t_last,stale}

其中n为一个CB中所包含的CW的数目,当n太小时,退化为简单背景,当n较大时可以对复杂背景进行建模;t为CB更新的次数。CW是一个6元组,其中IHigh和ILow作为更新时的学习上下界,max和min记录当前像素的最大值和最小值。上次更新的时间t_last和陈旧时间stale(记录该CW多久未被访问)用来删除很少使用的CodeWord。

假设当前训练图像I中某一像素为I(x,y),该像素的CB的更新算法如下,另外记背景阈值的增长判定阈值为Bounds:

(1) CB的访问次数加1;

(2) 遍历CB中的每个CW,如果存在一个CW中的IHigh,ILow满足ILow≤I(x,y)≤IHigh,则转(4);

(3) 创建一个新的码字CWnew加入到CB中, CWnew的max与min都赋值为I(x,y),IHigh <- I(x,y) + Bounds,ILow <- I(x,y) – Bounds,并且转(6);

(4) 更新该码字的t_last,若当前像素值I(x,y)大于该码字的max,则max <- I(x,y),若I(x,y)小于该码字的min,则min <- I(x,y);

(5) 更新该码字的学习上下界,以增加背景模型对于复杂背景的适应能力,具体做法是:若IHigh < I(x,y) + Bounds,则IHigh 增长1,若ILow > I(x,y) – Bounds,则ILow减少1;

(6) 更新CB中每个CW的stale。

使用已建立好的CB进行运动目标检测的方法很简单,记判断前景的范围上下界为minMod和maxMod,对于当前待检测图像上的某一像素I(x,y),遍历它对应像素背景模型CB中的每一个码字CW,若存在一个CW,使得I(x,y) < max + maxMod并且I(x,y) > min – minMod,则I(x,y)被判断为背景,否则被判断为前景。

在实际使用CodeBook进行运动检测时,除了要隔一定的时间对CB进行更新的同时,需要对CB进行一个时间滤波,目的是去除很少被访问到的CW,其方法是访问每个CW的stale,若stale大于一个阈值(通常设置为总更新次数的一半),移除该CW。

以下是范例程序。其中 updateCodebook() 用于学习背景,clearStaleEntries() 用于学习前景物体,backgroundDiff() 用于找出前景物体。整体程序逻辑流程如下

Learning Opencv 3 —— 十五章 背景去除 Background Subtraction (二)_第1张图片

//Example 15-4. Codebook algorithm implementation
#include 
#include 
#include 
#include 
#include 

using namespace std;

#define CHANNELS 3			//Always 3 because yuv
int cbBounds[CHANNELS];		// IF pixel is within this bound outside of codebook, learn it, else form new code
int minMod[CHANNELS];		// If pixel is lower than a codebook by this amount, it's matched
int maxMod[CHANNELS];		// If pixel is high than a codebook by this amount, it's matched


//The variable t counts the number of points we’ve accumulated since the start or the last
//clear operation. Here’s how the actual codebook elements are described:
//
class CodeElement {
	public:
		uchar learnHigh[CHANNELS];	//High side threshold for learning
		uchar learnLow[CHANNELS];	//Low side threshold for learning
		uchar max[CHANNELS];		//High side of box boundary
		uchar min[CHANNELS];		//Low side of box boundary
		int t_last_update;			//Allow us to kill stale entries
		int stale; 					//max negative run (longest period of inactivity)

		CodeElement() {
			for(int i = 0; i < CHANNELS; i++)
				learnHigh[i] = learnLow[i] = max[i] = min[i] = 0;
			t_last_update = stale = 0;
		}
		
		CodeElement& operator=( const CodeElement& ce ) {
			for(int i=0; i {
	public:
	int t;     //Count of every image learned on
	
	// count every access
	CodeBook() { t=0; }
	
	// Default is an empty book
	CodeBook( int n ) : vector(n) { t=0; } // Construct book of size n
};


// Updates the codebook entry with a new data point
// Note: cbBounds must be of length equal to numChannels
//
//
int updateCodebook(  	// return CodeBook index
	const cv::Vec3b& p, // incoming YUV pixel
	CodeBook& c, 		// CodeBook for the pixel
	int* cbBounds,	// Bounds for codebook (usually: {10,10,10})
	int numChannels 	// Number of color channels we're learning
	) {
	if(c.size() == 0) 
		c.t = 0;
	c.t += 1;		//Record learning event
	//SET HIGH AND LOW BOUNDS
	unsigned int high[3], low[3], n;
	for( n=0; n 255 ) high[n] = 255;
		low[n] = p[n] - *(cbBounds+n);
		if( low[n] < 0) low[n] = 0;
	}
	
	// SEE IF THIS FITS AN EXISTING CODEWORD
	//
	int i;
	int matchChannel;
	for( i=0; i p[n] ) 
					c[i].min[n] = p[n];
			}
			break;
		}
	}
	
	// OVERHEAD TO TRACK POTENTIAL STALE ENTRIES
	//
	for( int s=0; s low[n] ) c[i].learnLow[n] -= 1;
	}
	return c.size();
}

// During learning, after you've learned for some period of time,
// periodically call this to clear out stale codebook entries
//
int foo = 0;
int clearStaleEntries(
	// return number of entries cleared
	CodeBook &c
	// Codebook to clean up
){
	int staleThresh = c.t>>1;
	int *keep = new int[c.size()];
	int keepCnt = 0;
	
	// SEE WHICH CODEBOOK ENTRIES ARE TOO STALE
	//
	int foogo2 = 0;
	for( int i=0; i staleThresh) 
			keep[i] = 0; // Mark for destruction
		else
		{
			keep[i] = 1; // Mark to keep
			keepCnt += 1;
		}
	}
	
	// move the entries we want to keep to the front of the vector and then
	// truncate to the correct length once all of the good stuff is saved.
	//
	int k = 0;
	int numCleared = 0;
	for( int ii=0; ii minMod[3], maxMod[3]. There is one min and
//      one max threshold per channel.
// 
uchar backgroundDiff( // return 0 => background, 255 => foreground
const cv::Vec3b& p,   // Pixel (YUV)
CodeBook& c,          // Codebook
int numChannels,      // Number of channels we are testing
int* minMod_,          // Add this (possibly negative) number onto max level
                      //    when determining whether new pixel is foreground
int* maxMod_           // Subtract this (possibly negative) number from min
                      //    level when determining whether new pixel is
                      //    foreground
) {
	int matchChannel;
	
	// SEE IF THIS FITS AN EXISTING CODEWORD
	//
	int i;
	for( i=0; i= c.size() )	//No match with codebook => foreground
		return 255;
	return 0; 			//Else background
}

///
/// This part adds a "main" to run the above code. 
///

// Just make a convienience class (assumes image will not change size in video);
class CbBackgroudDiff {
	public:
	cv::Mat Iyuv;					//Will hold the yuv converted image 
	cv::Mat mask;					//Will hold the background difference mask
	vector codebooks;   	//Will hold a CodeBook for each pixel
	int row, col, image_length;		//How many pixels are in the image
	
	//Constructor
	void init(cv::Mat &I_from_video) {
		vector v(3,10);
		set_global_vecs(cbBounds, v);
		v[0] = 6; v[1] = 20; v[2] = 8; //Just some decent defaults for low side
		set_global_vecs(minMod, v);
		v[0] = 70; v[1] = 20; v[2] = 6; //Decent defaults for high side
		set_global_vecs(maxMod, v);
		Iyuv.create(I_from_video.size(), I_from_video.type());
		mask.create(I_from_video.size(), CV_8UC1);
		row = I_from_video.rows;
		col = I_from_video.cols;
		image_length = row*col;
		cout << "(row,col,len) = (" << row << ", " << col << ", " << image_length << ")" << endl;
		codebooks.resize(image_length);
	}
	
	CbBackgroudDiff(cv::Mat &I_from_video) {
		init(I_from_video);
	}
	
	CbBackgroudDiff(){};
	
	//Convert to YUV
	void convert_to_yuv(cv::Mat &Irgb)
	{
		cvtColor(Irgb, Iyuv, cv::COLOR_BGR2YUV);
	}
	
	int size_check(cv::Mat &I) { //Check that image doesn't change size, return -1 if size doesn't match, else 0
		int ret = 0;
		if((row != I.rows) || (col != I.cols)) {
			cerr << "ERROR: Size changed! old[" << row << ", " << col << "], now [" << I.rows << ", " << I.cols << "]!" << endl;
			ret = -1;
		}
		return ret;
	}
	
	//Utilities for setting gloabals
	void set_global_vecs(int *globalvec, vector &vec) {
		if(vec.size() != CHANNELS) {
			cerr << "Input vec[" << vec.size() << "] should equal CHANNELS [" << CHANNELS << "]" << endl;
			vec.resize(CHANNELS, 10);
		}
		int i = 0;
		for (vector::iterator it = vec.begin(); it != vec.end(); ++it, ++i) {
			 globalvec[i] = *it;
		 }
	 }

	//Background operations
	int updateCodebookBackground(cv::Mat &Irgb) { //Learn codebook, -1 if error, else total # of codes
		convert_to_yuv(Irgb);
		if(size_check(Irgb))
			return -1;
		int total_codebooks = 0;
		cv::Mat_::iterator Iit = Iyuv.begin(), IitEnd = Iyuv.end();
		vector::iterator Cit = codebooks.begin(), CitEnd = codebooks.end();
		for(; Iit != IitEnd; ++Iit,++Cit) {
			total_codebooks += updateCodebook(*Iit,*Cit,cbBounds,CHANNELS);
		}
		if(Cit != CitEnd)
			cerr << "ERROR: Cit != CitEnd in updateCodeBackground(...) " << endl;
		return(total_codebooks);
	}

	int clearStaleEntriesBackground() { //Clean out stuff that hasn't been updated for a long time
		int total_cleared = 0;
		vector::iterator Cit = codebooks.begin(), CitEnd = codebooks.end();
		for(; Cit != CitEnd; ++Cit) {
			total_cleared += clearStaleEntries(*Cit);
		}
		return(total_cleared);
	}

	int backgroundDiffBackground(cv::Mat &Irgb) {  //Take the background difference of the image
		convert_to_yuv(Irgb);
		if(size_check(Irgb))
			return -1;
		cv::Mat_::iterator Iit = Iyuv.begin(), IitEnd = Iyuv.end();
		vector::iterator Cit = codebooks.begin(), CitEnd = codebooks.end();
		cv::Mat_::iterator Mit = mask.begin(), MitEnd = mask.end();
		for(; Iit != IitEnd; ++Iit,++Cit,++Mit) {
			*Mit = backgroundDiff(*Iit,*Cit,CHANNELS,minMod,maxMod);
		}
		if((Cit != CitEnd)||(Mit != MitEnd)){
			cerr << "ERROR: Cit != CitEnd and, or Mit != MitEnd in updateCodeBackground(...) " << endl;
			return -1;
		}
		return 0;
	}
}; // end CbBackgroudDiff


void help(char** argv ) {
	cout << "\n"
	<< "Train a codebook background model on the first <#frames to train on> frames of an incoming video, then run the model\n"
	<< argv[0] <<" <#frames to train on> \n"
	<< "For example:\n"
	<< argv[0] << " 50 ../tree.avi\n"
	<< "'A' or 'a' to adjust thresholds, esc, 'q' or 'Q' to quit"
	<< endl;
}

//Adjusting the distance you have to be on the low side (minMod) or high side (maxMod) of a codebook
//to be considered as recognized/background
//
void adjustThresholds(char* charstr, cv::Mat &Irgb, CbBackgroudDiff &bgd) {
	int key = 1;
	int y = 1,u = 0,v = 0, index = 0, thresh = 0;
	if(thresh)
		cout << "yuv[" << y << "][" << u << "][" << v << "] maxMod active" << endl;
	else
		cout << "yuv[" << y << "][" << u << "][" << v << "] minMod active" << endl;
	cout << "minMod[" << minMod[0] << "][" << minMod[1] << "][" << minMod[2] << "]" << endl;
	cout << "maxMod[" << maxMod[0] << "][" << maxMod[1] << "][" << maxMod[2] << "]" << endl;
	while((key = cv::waitKey()) != 27 && key != 'Q' && key != 'q')  // Esc or Q or q to exit
	{
		if(thresh)
			cout << "yuv[" << y << "][" << u << "][" << v << "] maxMod active" << endl;
		else
			cout << "yuv[" << y << "][" << u << "][" << v << "] minMod active" << endl;
		cout << "minMod[" << minMod[0] << "][" << minMod[1] << "][" << minMod[2] << "]" << endl;
		cout << "maxMod[" << maxMod[0] << "][" << maxMod[1] << "][" << maxMod[2] << "]" << endl;
		
		if(key == 'y') { y = 1; u = 0; v = 0; index = 0;}
		if(key == 'u') { y = 0; u = 1; v = 0; index = 1;}
		if(key == 'v') { y = 0; u = 0; v = 1; index = 2;}
		if(key == 'l') { thresh = 0;} //minMod
		if(key == 'h') { thresh = 1;} //maxMod
		if(key == '.') { //Up
			if(thresh == 0) { minMod[index] += 4;}
			if(thresh == 1) { maxMod[index] += 4;}
		}
		if(key == ',') { //Down
			if(thresh == 0) { minMod[index] -= 4;}
			if(thresh == 1) { maxMod[index] -= 4;}
		}
		cout << "y,u,v for channel; l for minMod, h for maxMod threshold; , for down, . for up; esq or q to quit;" << endl;
		bgd.backgroundDiffBackground(Irgb);
		cv::imshow(charstr, bgd.mask);
	}
}



int main( int argc, char** argv) {
	cv::namedWindow( argv[0], cv::WINDOW_AUTOSIZE );
	cv::VideoCapture cap;
	if((argc < 3)|| !cap.open(argv[2])) {
		cerr << "Couldn't run the program" << endl;
		help(argv);
		cap.open(0);
		return -1;
	}
	int number_to_train_on = atoi( argv[1] );
	cv::Mat image; 
	CbBackgroudDiff bgd;

	// FIRST PROCESSING LOOP (TRAINING):
	//
	int frame_count = 0;
	int key;
	bool first_frame = true;
	cout << "Total frames to train on = " << number_to_train_on << endl; //db
	char seg[] = "Segmentation";
	while(1) {
		cout << "frame#: " << frame_count;
		cap >> image;
		if( !image.data ) exit(1); // Something went wrong, abort
		if(frame_count == 0) { bgd.init(image);}
		
		cout << ", Codebooks: " << bgd.updateCodebookBackground(image) << endl;
		
		cv::imshow( argv[0], image );
		frame_count++;
		if( (key = cv::waitKey(7)) == 27 || key == 'q' || key == 'Q' || frame_count >= number_to_train_on) break; //Allow early exit on space, esc, q
	}

	// We have accumulated our training, now create the models
	//
	cout << "Created the background model" << endl;
	cout << "Total entries cleared = " << bgd.clearStaleEntriesBackground() << endl;
	cout << "Press a key to start background differencing, 'a' to set thresholds, esc or q or Q to quit" << endl;
	
	// SECOND PROCESSING LOOP (TESTING):
	//
	cv::namedWindow( seg, cv::WINDOW_AUTOSIZE );
	while((key = cv::waitKey()) != 27 || key == 'q' || key == 'Q'  ) { // esc, 'q' or 'Q' to exit
		cap >> image;
		if( !image.data ) exit(0);
		cout <<  frame_count++ << " 'a' to adjust threholds" << endl;
		if(key == 'a') {
			cout << "Adjusting thresholds" << endl;
		cout << "y,u,v for channel; l for minMod, h for maxMod threshold; , for down, . for up; esq or q to quit;" << endl;
			adjustThresholds(seg,image,bgd);
		}
		else {
			if(bgd.backgroundDiffBackground(image)) {
				cerr << "ERROR, bdg.backgroundDiffBackground(...) failed" << endl;
				exit(-1);
			}
		}
		cv::imshow("Segmentation",bgd.mask);
	}
	exit(0);
}

使用连通分量进行前景清理

// Example 15-5. Cleanup using connected components
// This cleans up the foreground segmentation mask derived from calls
// to backgroundDiff
//
#include 
#include 
#include 
#include 
#include 

using namespace std;

// polygons will be simplified using DP algorithm with 'epsilon' a fixed
// fraction of the polygon's length. This number is that divisor.
//
#define DP_EPSILON_DENOMINATOR 20.0
// How many iterations of erosion and/or dilation there should be
//
#define CVCLOSE_ITR 1	

void findConnectedComponents(
	cv::Mat& mask,				// Is a grayscale (8-bit depth) "raw" mask image
								// that will be cleaned up
	int poly1_hull0,	 		// If set, approximate connected component by
								// (DEFAULT: 1) polygon, or else convex hull (0)
	float perimScale, 			// Len = (width+height)/perimScale. If contour
								// len < this, delete that contour (DEFAULT: 4)
	vector& bbs,		// Ref to bounding box rectangle return vector
	vector& centers	// Ref to contour centers return vector
	) {
	bbs.clear();
	centers.clear();
	
	// CLEAN UP RAW MASK
	//
	cv::morphologyEx(
		mask, mask, cv::MORPH_OPEN, cv::Mat(), cv::Point(-1,-1), CVCLOSE_ITR);
	cv::morphologyEx(
		mask, mask, cv::MORPH_CLOSE, cv::Mat(), cv::Point(-1,-1), CVCLOSE_ITR);

	
	// FIND CONTOURS AROUND ONLY BIGGER REGIONS
	//
	vector< vector > contours_all; // all contours found
	vector< vector > contours;

	// just the ones we want to keep 
	cv::findContours( mask,	contours_all, cv::RETR_EXTERNAL,
		cv::CHAIN_APPROX_SIMPLE);

	for( vector< vector >::iterator c = contours_all.begin();
			c != contours_all.end(); ++c) {
			
		// length of this contour
		//
		int len = cv::arcLength( *c, true );
		
		// length threshold a fraction of image perimeter
		//
		double q = (mask.rows + mask.cols) / DP_EPSILON_DENOMINATOR;	
		if( len >= q ) { // If the contour is long enough to keep...
			vector c_new;
			if( poly1_hull0 ) {
				// If the caller wants results as reduced polygons...
				cv::approxPolyDP( *c, c_new, len/200.0, true );
			} else {
				// Convex Hull of the segmentation
				cv::convexHull( *c, c_new );
			}
			contours.push_back(c_new );
		}
	}

	// Just some convenience variables
	const cv::Scalar CVX_WHITE(0xff,0xff,0xff);
	const cv::Scalar CVX_BLACK(0x00,0x00,0x00);
	
	// CALC CENTER OF MASS AND/OR BOUNDING RECTANGLES
	//
	int idx = 0;
	cv::Moments moments;
	cv::Mat scratch = mask.clone();
	for(vector< vector >::iterator c = contours.begin();
		c != contours.end(); c++, idx++) {
		cv::drawContours( scratch, contours, idx, CVX_WHITE, cv::FILLED);
		
		// Find the center of each contour
		//
		moments = cv::moments( scratch, true );
		cv::Point p;
		p.x = (int)( moments.m10 / moments.m00 );
		p.y = (int)( moments.m01 / moments.m00 );
		centers.push_back(p);
		bbs.push_back( cv::boundingRect(*c) );
		scratch.setTo( 0 );
	}

	// PAINT THE FOUND REGIONS BACK INTO THE IMAGE
	//
	mask.setTo( 0 );
	cv::drawContours( mask, contours, -1, CVX_WHITE, cv::FILLED );
}		


// Use previous example_15-04 and clean up its images //



#define CHANNELS 3			//Always 3 because yuv
int cbBounds[CHANNELS];		// IF pixel is within this bound outside of codebook, learn it, else form new code
int minMod[CHANNELS];		// If pixel is lower than a codebook by this amount, it's matched
int maxMod[CHANNELS];		// If pixel is high than a codebook by this amount, it's matched


//The variable t counts the number of points we’ve accumulated since the start or the last
//clear operation. Here’s how the actual codebook elements are described:
//
class CodeElement {
	public:
		uchar learnHigh[CHANNELS];	//High side threshold for learning
		uchar learnLow[CHANNELS];	//Low side threshold for learning
		uchar max[CHANNELS];		//High side of box boundary
		uchar min[CHANNELS];		//Low side of box boundary
		int t_last_update;			//Allow us to kill stale entries
		int stale; 					//max negative run (longest period of inactivity)

		CodeElement() {
			for(int i = 0; i < CHANNELS; i++)
				learnHigh[i] = learnLow[i] = max[i] = min[i] = 0;
			t_last_update = stale = 0;
		}
		
		CodeElement& operator=( const CodeElement& ce ) {
			for(int i=0; i {
	public:
	int t;     //Count of every image learned on
	
	// count every access
	CodeBook() { t=0; }
	
	// Default is an empty book
	CodeBook( int n ) : vector(n) { t=0; } // Construct book of size n
};


// Updates the codebook entry with a new data point
// Note: cbBounds must be of length equal to numChannels
//
//
int updateCodebook(  	// return CodeBook index
	const cv::Vec3b& p, // incoming YUV pixel
	CodeBook& c, 		// CodeBook for the pixel
	int* cbBounds,	// Bounds for codebook (usually: {10,10,10})
	int numChannels 	// Number of color channels we're learning
	) {
	if(c.size() == 0) 
		c.t = 0;
	c.t += 1;		//Record learning event
	//SET HIGH AND LOW BOUNDS
	unsigned int high[3], low[3], n;
	for( n=0; n 255 ) high[n] = 255;
		low[n] = p[n] - *(cbBounds+n);
		if( low[n] < 0) low[n] = 0;
	}
	
	// SEE IF THIS FITS AN EXISTING CODEWORD
	//
	int i;
	int matchChannel;
	for( i=0; i p[n] ) 
					c[i].min[n] = p[n];
			}
			break;
		}
	}
	
	// OVERHEAD TO TRACK POTENTIAL STALE ENTRIES
	//
	for( int s=0; s low[n] ) c[i].learnLow[n] -= 1;
	}
	return c.size();
}

// During learning, after you've learned for some period of time,
// periodically call this to clear out stale codebook entries
//
int foo = 0;
int clearStaleEntries(
	// return number of entries cleared
	CodeBook &c
	// Codebook to clean up
){
	int staleThresh = c.t>>1;
	int *keep = new int[c.size()];
	int keepCnt = 0;
	
	// SEE WHICH CODEBOOK ENTRIES ARE TOO STALE
	//
	int foogo2 = 0;
	for( int i=0; i staleThresh) 
			keep[i] = 0; // Mark for destruction
		else
		{
			keep[i] = 1; // Mark to keep
			keepCnt += 1;
		}
	}
	
	// move the entries we want to keep to the front of the vector and then
	// truncate to the correct length once all of the good stuff is saved.
	//
	int k = 0;
	int numCleared = 0;
	for( int ii=0; ii minMod[3], maxMod[3]. There is one min and
//      one max threshold per channel.
// 
uchar backgroundDiff( // return 0 => background, 255 => foreground
const cv::Vec3b& p,   // Pixel (YUV)
CodeBook& c,          // Codebook
int numChannels,      // Number of channels we are testing
int* minMod_,          // Add this (possibly negative) number onto max level
                      //    when determining whether new pixel is foreground
int* maxMod_           // Subtract this (possibly negative) number from min
                      //    level when determining whether new pixel is
                      //    foreground
) {
	int matchChannel;
	
	// SEE IF THIS FITS AN EXISTING CODEWORD
	//
	int i;
	for( i=0; i= c.size() )	//No match with codebook => foreground
		return 255;
	return 0; 			//Else background
}

///
/// This part adds a "main" to run the above code. 
///

// Just make a convienience class (assumes image will not change size in video);
class CbBackgroudDiff {
	public:
	cv::Mat Iyuv;					//Will hold the yuv converted image 
	cv::Mat mask;					//Will hold the background difference mask
	vector codebooks;   	//Will hold a CodeBook for each pixel
	int row, col, image_length;		//How many pixels are in the image
	
	//Constructor
	void init(cv::Mat &I_from_video) {
		vector v(3,10);
		set_global_vecs(cbBounds, v);
		v[0] = 6; v[1] = 20; v[2] = 8; //Just some decent defaults for low side
		set_global_vecs(minMod, v);
		v[0] = 70; v[1] = 20; v[2] = 6; //Decent defaults for high side
		set_global_vecs(maxMod, v);
		Iyuv.create(I_from_video.size(), I_from_video.type());
		mask.create(I_from_video.size(), CV_8UC1);
		row = I_from_video.rows;
		col = I_from_video.cols;
		image_length = row*col;
		cout << "(row,col,len) = (" << row << ", " << col << ", " << image_length << ")" << endl;
		codebooks.resize(image_length);
	}
	
	CbBackgroudDiff(cv::Mat &I_from_video) {
		init(I_from_video);
	}
	
	CbBackgroudDiff(){};
	
	//Convert to YUV
	void convert_to_yuv(cv::Mat &Irgb)
	{
		cvtColor(Irgb, Iyuv, cv::COLOR_BGR2YUV);
	}
	
	int size_check(cv::Mat &I) { //Check that image doesn't change size, return -1 if size doesn't match, else 0
		int ret = 0;
		if((row != I.rows) || (col != I.cols)) {
			cerr << "ERROR: Size changed! old[" << row << ", " << col << "], now [" << I.rows << ", " << I.cols << "]!" << endl;
			ret = -1;
		}
		return ret;
	}
	
	//Utilities for setting gloabals
	void set_global_vecs(int *globalvec, vector &vec) {
		if(vec.size() != CHANNELS) {
			cerr << "Input vec[" << vec.size() << "] should equal CHANNELS [" << CHANNELS << "]" << endl;
			vec.resize(CHANNELS, 10);
		}
		int i = 0;
		for (vector::iterator it = vec.begin(); it != vec.end(); ++it, ++i) {
			 globalvec[i] = *it;
		 }
	 }

	//Background operations
	int updateCodebookBackground(cv::Mat &Irgb) { //Learn codebook, -1 if error, else total # of codes
		convert_to_yuv(Irgb);
		if(size_check(Irgb))
			return -1;
		int total_codebooks = 0;
		cv::Mat_::iterator Iit = Iyuv.begin(), IitEnd = Iyuv.end();
		vector::iterator Cit = codebooks.begin(), CitEnd = codebooks.end();
		for(; Iit != IitEnd; ++Iit,++Cit) {
			total_codebooks += updateCodebook(*Iit,*Cit,cbBounds,CHANNELS);
		}
		if(Cit != CitEnd)
			cerr << "ERROR: Cit != CitEnd in updateCodeBackground(...) " << endl;
		return(total_codebooks);
	}

	int clearStaleEntriesBackground() { //Clean out stuff that hasn't been updated for a long time
		int total_cleared = 0;
		vector::iterator Cit = codebooks.begin(), CitEnd = codebooks.end();
		for(; Cit != CitEnd; ++Cit) {
			total_cleared += clearStaleEntries(*Cit);
		}
		return(total_cleared);
	}

	int backgroundDiffBackground(cv::Mat &Irgb) {  //Take the background difference of the image
		convert_to_yuv(Irgb);
		if(size_check(Irgb))
			return -1;
		cv::Mat_::iterator Iit = Iyuv.begin(), IitEnd = Iyuv.end();
		vector::iterator Cit = codebooks.begin(), CitEnd = codebooks.end();
		cv::Mat_::iterator Mit = mask.begin(), MitEnd = mask.end();
		for(; Iit != IitEnd; ++Iit,++Cit,++Mit) {
			*Mit = backgroundDiff(*Iit,*Cit,CHANNELS,minMod,maxMod);
		}
		if((Cit != CitEnd)||(Mit != MitEnd)){
			cerr << "ERROR: Cit != CitEnd and, or Mit != MitEnd in updateCodeBackground(...) " << endl;
			return -1;
		}
		return 0;
	}
}; // end CbBackgroudDiff


void help(char** argv ) {
	cout << "\n"
	<< "We test out our connected components algorithm using the background code from example_0=15-04\n"
	<< "First we train a codebook background model on the first <#frames to train on> frames"
	<< " of an incoming video, then run the model on it cleaning it up with findConnectedComponents\n"
	<< argv[0] <<" <#frames to train on> \n"
	<< "For example:\n"
	<< argv[0] << " 50 ../tree.avi\n"
	<< "'A' or 'a' to adjust thresholds, esc, 'q' or 'Q' to quit"
	<< endl;
}

//Adjusting the distance you have to be on the low side (minMod) or high side (maxMod) of a codebook
//to be considered as recognized/background
//
void adjustThresholds(char* charstr, cv::Mat &Irgb, CbBackgroudDiff &bgd) {
	int key = 1;
	int y = 1,u = 0,v = 0, index = 0, thresh = 0;
	if(thresh)
		cout << "yuv[" << y << "][" << u << "][" << v << "] maxMod active" << endl;
	else
		cout << "yuv[" << y << "][" << u << "][" << v << "] minMod active" << endl;
	cout << "minMod[" << minMod[0] << "][" << minMod[1] << "][" << minMod[2] << "]" << endl;
	cout << "maxMod[" << maxMod[0] << "][" << maxMod[1] << "][" << maxMod[2] << "]" << endl;
	while((key = cv::waitKey()) != 27 && key != 'Q' && key != 'q')  // Esc or Q or q to exit
	{
		if(thresh)
			cout << "yuv[" << y << "][" << u << "][" << v << "] maxMod active" << endl;
		else
			cout << "yuv[" << y << "][" << u << "][" << v << "] minMod active" << endl;
		cout << "minMod[" << minMod[0] << "][" << minMod[1] << "][" << minMod[2] << "]" << endl;
		cout << "maxMod[" << maxMod[0] << "][" << maxMod[1] << "][" << maxMod[2] << "]" << endl;
		
		if(key == 'y') { y = 1; u = 0; v = 0; index = 0;}
		if(key == 'u') { y = 0; u = 1; v = 0; index = 1;}
		if(key == 'v') { y = 0; u = 0; v = 1; index = 2;}
		if(key == 'l') { thresh = 0;} //minMod
		if(key == 'h') { thresh = 1;} //maxMod
		if(key == '.') { //Up
			if(thresh == 0) { minMod[index] += 4;}
			if(thresh == 1) { maxMod[index] += 4;}
		}
		if(key == ',') { //Down
			if(thresh == 0) { minMod[index] -= 4;}
			if(thresh == 1) { maxMod[index] -= 4;}
		}
		cout << "y,u,v for channel; l for minMod, h for maxMod threshold; , for down, . for up; esq or q to quit;" << endl;
		bgd.backgroundDiffBackground(Irgb);
		cv::imshow(charstr, bgd.mask);
	}
}



vector bbs;		// Ref to bounding box rectangle return vector
vector centers;	// Ref to contour centers return vector


int main( int argc, char** argv) {
	cv::namedWindow( argv[0], cv::WINDOW_AUTOSIZE );
	cv::VideoCapture cap;
	if((argc < 3)|| !cap.open(argv[2])) {
		cerr << "Couldn't run the program" << endl;
		help(argv);
		cap.open(0);
		return -1;
	}
	int number_to_train_on = atoi( argv[1] );
	cv::Mat image; 
	CbBackgroudDiff bgd;

	// FIRST PROCESSING LOOP (TRAINING):
	//
	int frame_count = 0;
	int key;
	bool first_frame = true;
	cout << "Total frames to train on = " << number_to_train_on << endl;
	char seg[] = "Segmentation";
	while(1) {
		cout << "frame#: " << frame_count;
		cap >> image;
		if( !image.data ) exit(1); // Something went wrong, abort
		if(frame_count == 0) { bgd.init(image);}
		
		cout << ", Codebooks: " << bgd.updateCodebookBackground(image) << endl;
		
		cv::imshow( argv[0], image );
		frame_count++;
		if( (key = cv::waitKey(7)) == 27 || key == 'q' || key == 'Q' || frame_count >= number_to_train_on) break; //Allow early exit on space, esc, q
	}

	// We have accumulated our training, now create the models
	//
	cout << "Created the background model" << endl;
	cout << "Total entries cleared = " << bgd.clearStaleEntriesBackground() << endl;
	cout << "Press a key to start background differencing, 'a' to set thresholds, esc or q or Q to quit" << endl;
	
	// SECOND PROCESSING LOOP (TESTING):
	//
	cv::namedWindow( seg, cv::WINDOW_AUTOSIZE );
	cv::namedWindow("Conected Components", cv::WINDOW_AUTOSIZE);
	while((key = cv::waitKey()) != 27 || key == 'q' || key == 'Q'  ) { // esc, 'q' or 'Q' to exit
		cap >> image;
		if( !image.data ) exit(0);
		cout <<  frame_count++ << " 'a' to adjust threholds" << endl;
		if(key == 'a') {
			cout << "Adjusting thresholds" << endl;
		cout << "y,u,v for channel; l for minMod, h for maxMod threshold; , for down, . for up; esq or q to quit;" << endl;
			adjustThresholds(seg,image,bgd);
		}
		else {
			if(bgd.backgroundDiffBackground(image)) {
				cerr << "ERROR, bdg.backgroundDiffBackground(...) failed" << endl;
				exit(-1);
			}
		}
		cv::imshow("Segmentation",bgd.mask);
		findConnectedComponents(bgd.mask, 1, 4, bbs, centers);
		cv::imshow("Conected Components", bgd.mask);
	}
	exit(0);
}

Opencv 背景去除算法封装

背景去除算法基本类 cv::BackgroundSubtractor

class cv::BackgroundSubtractor {
public:
	virtual ~BackgroundSubtractor();
	virtual void apply()(
		cv::InputArray image,
		cv::OutputArray fgmask,
		double learningRate = -1
		);
	virtual void getBackgroundImage(
		cv::OutputArray backgroundImage
	) const;
};

其中 apply() 输入一张图像并得到其中的前景物体,而 getBackgroundImage() 将返回背景模型中存在的一部分物体信息。由于考虑到现实场景中任何背景都可能移动或改变而变为前景,因此在 apply() 中在进行前景检测的同时也将进行训练从而获取从背景变为前景的物体。

KaewTraKuPong and Bowden (KB) 方法

cv::Ptr
cv::bgsegm::createBackgroundSubtractorMOG(
	int history = 200,
	int nmixtures = 5,
	double backgroundRatio = 0.7,
	double noiseSigma = 0
);

参数说明:

  • history:多少帧将被记入考虑范围,默认为 200
  • nmixtures:混合高斯模型中高斯分量的个数,默认为 5
  • backgroundRatio:最少的需要的高斯分量和
  • noiseSigma:如果某个像素点不在当前高斯分量的表示范围内,如果高斯分量不满,则创建新的高斯分量;如果已满,则去除权重最低的替换为新的高斯分量。

Zivkovic 方法

其与 KB 方法类似,唯一的不同是 Z 方法并不固定高斯分量的个数,而是动态调整。

Ptr createBackgroundSubtractorMOG2(
	int history = 500,
	double varThreshold = 16,
	bool detectShadows = true
);

参数说明:

  • history:其可以理解为遗忘因子,如果设置为 500,那么每一帧的影响为 (1-0.002)^t
  • varThreshold:根据马氏距离得到的方差阈值,大于这个阈值就将产生新的高斯分量,默认设置为 4 倍的方差,4 * 4 = 16
  • bShadowDetection:允许阴影检测并移除
class cv::BackgroundSubtractorMOG2 {
	...
public:
	...
	int getNMixtures() const; // Minimum number of mixture components
	void setNMixtures(int nmixtures);
	double getBackgroundRatio() const; // If component is significant enough
	void setBackgroundRatio(double backgroundRatio);
	double getVarInit() const; // Initial variance for new components
	void setVarInit(double varInit) const;
	double getVarMin() const; // Smallest allowed variance
	void setVarMin(double varMin);
	double getVarMax() const; // Largest allowed variance
	void setVarMax(double varMax);
	double getComplexityReductionThreshold() const; // Samples needed to prove that
													// the component exists
	void setComplexityReductionThreshold(double CT);
	bool getDetectShadows() const; // true try to detect shadows
	void setDetectShadows(bool detectShadows);
	int getShadowValue() const; // value of shadow pixels in
	void setShadowValue(int value); // output mask
	double getShadowThreshold() const; // Shadow threshold
	void setShadowThreshold(double shadowThreshold);
	...
};

参数说明:

  • nmixtures:每个像素点可以包含的高斯分量,默认为 5
  • backgroundRatio:同 KB 方法,默认为 0.9
  • varInit, varMin and varMax:方差的初始值,最小值和最大值,默认为 15, 4, 75。varInit 类似于 KB 方法中的 noiseSigma
  • CT:complexity reduction prior,接受某个分量的样本数,默认为 0.05。如果设置为 0.00,整个算法在速度和结果上将从本质上简化
  • shadowValue:如果 detectShadows 设为 True,那么阴影将为设置为该值,默认为 127
  • shadowThreshold:相比于已经存在在模型中事物相比的明亮值。如果设置为 0.6,那么具有相同颜色且亮度在 0.6 到 1 之间的像素将被检测为阴影,默认为 0.5

你可能感兴趣的:(Opencv)