- yolov5单目测距+速度测量+目标跟踪
cv_2025
YOLO目标跟踪人工智能计算机视觉机器学习图像处理opencv
要在YOLOv5中添加测距和测速功能,您需要了解以下两个部分的原理:单目测距算法单目测距是使用单个摄像头来估计场景中物体的距离。常见的单目测距算法包括基于视差的方法(如立体匹配)和基于深度学习的方法(如神经网络)。基于深度学习的方法通常使用卷积神经网络(CNN)来学习从图像到深度图的映射关系。单目测距代码单目测距涉及到坐标转换,代码如下:defconvert_2D_to_3D(point2D,R,
- PaddleDetection多目标跟踪报错MCMOTEvaluator is not exist, so the MOTA will be -INF
ATM006
目标检测
ppdet.metrics.mcmot_metricsWARNING:gt_filename'{}'ofMCMOTEvaluatorisnotexist,sotheMOTAwillbe-INFPaddleDetection/ppdet/metrics/mcmot_metrics.pyclassMCMOTEvaluator(object):def__init__(self,data_root,seq
- 计算机设计大赛 深度学习交通车辆流量分析 - 目标检测与跟踪 - python opencv
iuerfee
python
文章目录0前言1课题背景2实现效果3DeepSORT车辆跟踪3.1DeepSORT多目标跟踪算法3.2算法流程4YOLOV5算法4.1网络架构图4.2输入端4.3基准网络4.4Neck网络4.5Head输出层5最后0前言优质竞赛项目系列,今天要分享的是**基于深度学习得交通车辆流量分析**该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工
- 互联网加竞赛 多目标跟踪算法 实时检测 - opencv 深度学习 机器视觉
Mr.D学长
pythonjava
文章目录0前言2先上成果3多目标跟踪的两种方法3.1方法13.2方法24TrackingByDetecting的跟踪过程4.1存在的问题4.2基于轨迹预测的跟踪方式5训练代码6最后0前言优质竞赛项目系列,今天要分享的是深度学习多目标跟踪实时检测该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:4分更多资料,项目分享:ht
- 【目标跟踪】提供一种简单跟踪测距方法(c++)
读书猿
目标跟踪c++人工智能
文章目录一、前言二、c++代码2.1、Tracking2.2、KalmanTracking2.3、Hungarian2.4、TrackingInfo三、调用示例四、结果一、前言在许多目标检测应用场景中,完完全全依赖目标检测对下游是很难做出有效判断,如漏检。检测后都会加入跟踪进行一些判断或者说补偿。而在智能驾驶中,还需要目标位置信息,所以还需要测距。往期博客介绍了许多处理复杂问题的,而大部分时候我们
- 利用YOLOv8 pose estimation 进行 人的 头部等马赛克
shiter
大数据+AI赋能行业助力企业数字化转型最佳实践案例YOLO
文章大纲马赛克几种OpenCV实现马赛克的方法高斯模糊poseestimation定位并模糊:三角形的外接圆与膨胀系数实现实现代码实现效果参考文献与学习路径之前写过一个文章记录,怎么对人进行目标检测后打码,但是人脸识别有个问题是,很多人的背影,或者侧面无法识别出来人脸,那么我们就可以用姿态估计中的关键点信息进行补充,对人头进行打码,从而进一步的保护隐私信息。目标跟踪与检测后进行OpenCV人脸识别
- 吉格勒定理:你是一个有目标的人吗
Garey_8132
心理学家对哈佛大学的一批毕业生进行过一次人生目标跟踪调查。在调查中,研究人员发现:这些毕业生中有3%的人曾经确立了远大的目标;有10%的人有明确的短期目标;有60%的人目标不清晰,只求过好眼下的生活;还有27%的人几乎没有目标,完全是随遇而安。20年后,研究人员惊奇地发现:曾经树立过远大目标的3%的人,大都完成了自己的既定目标,事业有成;那10%的人虽没有卓尔不群,但也是社会中的上层人士;那60%
- 互联网加竞赛 基于深度学习的视频多目标跟踪实现
Mr.D学长
pythonjava
文章目录1前言2先上成果3多目标跟踪的两种方法3.1方法13.2方法24TrackingByDetecting的跟踪过程4.1存在的问题4.2基于轨迹预测的跟踪方式5训练代码6最后1前言优质竞赛项目系列,今天要分享的是基于深度学习的视频多目标跟踪实现该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/dancheng-senior/postg
- 第九篇【传奇开心果系列】Python的OpenCV技术点案例示例:目标跟踪
传奇开心果编程
Python库OpenCV技术点案例示例短博文pythonopencv目标跟踪
传奇开心果短博文系列系列短博文目录Python的OpenCV技术点案例示例系列短博文目录前言二、常用的目标跟踪功能、高级功能和增强跟踪技术介绍三、常用的目标跟踪功能示例代码四、OpenCV高级功能示例代码五、OpenCV跟踪目标增强技术示例代码六、归纳总结系列短博文目录Python的OpenCV技术点案例示例系列短博文目录前言目标跟踪:包括多目标跟踪、运动目标跟踪等功能。OpenCV是一个流行的计
- 【Visual Object Tracking】Learning notes
bryant_meng
CNN/Transformer读书笔记深度学习人工智能单目标跟踪VOT
DenseOpticalTracking:ConnectingtheDots参考学习来自:单目标跟踪Siamese系列网络:SiamFC、SiamRPN、one-shot跟踪、one-shotting单样本学习、DaSiamRPN、SiamRPN++、SiamMask单目标跟踪:跟踪效果/单目标跟踪:数据集处理/单目标跟踪:模型搭建/单目标跟踪:模型训练/单目标跟踪:模型测试单目标跟踪SiamMa
- 开源计算机视觉库OpenCV详解和实际运用案例
黑夜照亮前行的路
计算机视觉
开源计算机视觉库OpenCV是一个功能强大的工具,广泛应用于图像处理和计算机视觉领域。它包含许多优化算法,涵盖了图像处理、特征检测、目标跟踪等多个方面的功能。以下是对OpenCV的详细解释和一些实际应用案例。一、OpenCV的模块和功能OpenCV主要包含以下几个模块:核心功能模块:包含基本的图像处理和计算机视觉功能,如图像读取、显示、保存、变换等。图像处理模块:提供一系列图像处理算法,如滤波、边
- 室内定位系列
_49_
室内定位系列(一)——WiFi位置指纹(译)室内定位系列(二)——仿真获取RSS数据室内定位系列(三)——位置指纹法的实现(KNN)室内定位系列(四)——位置指纹法的实现(测试各种机器学习分类器)室内定位系列(五)——目标跟踪(卡尔曼滤波)室内定位系列(六)——目标跟踪(粒子滤波)
- 【目标跟踪】相机运动补偿
读书猿
目标跟踪自动驾驶目标检测
文章目录一、前言二、简介三、改进思路3.1、状态定义3.2、相机运动补偿3.3、iou和ReID融合3.4、改进总结四、相机运动补偿一、前言目前MOT(MultipleObjectTracking)最有效的方法仍然是Tracking-by-detection。今天给大家分享一篇论文BoT-SORT。论文地址,论文声称很牛*,各种屠榜,今天我们就来一探究竟。主要是分享论文提出的改进点以及分享在自己的
- 计算机视觉中的目标跟踪
小北的北
计算机视觉目标跟踪人工智能机器学习
从保护我们城市的监控系统到自动驾驶车辆在道路上行驶,目标跟踪已经成为计算机视觉中的一项基础技术。本文深入探讨了目标跟踪,探索了其基本原理、多样化的方法以及在现实世界中的应用。什么是目标跟踪?目标跟踪是深度学习在计算机视觉中广泛应用的重要应用之一。它指的是在动态环境中通过分析轨迹自动识别和跟踪物体,一旦初始位置已知。目标跟踪隐式地使用技术来识别和分类帧中的对象,并为每个对象关联一个唯一的标识。通常,
- 计算机视觉实战项目4(单目测距与测速+摔倒检测+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A_路径规划+行人车辆计数+动物识别等)
阿利同学
计算机视觉目标检测单目测距目标跟踪姿态识别实力分割摔倒检测
基于YOLOv5的无人机视频检测与计数系统摘要:无人机技术的快速发展和广泛应用给社会带来了巨大的便利,但也带来了一系列的安全隐患。为了实现对无人机的有效管理和监控,本文提出了一种基于YOLOv5的无人机视频检测与计数系统。该系统通过使用YOLOv5目标检测算法,能够准确地检测无人机,并实时计数其数量,提供给用户可视化的监控界面。原文链接:https://blog.csdn.net/ALiLiLiY
- 【目标跟踪】3D点云跟踪
读书猿
目标跟踪3d人工智能
文章目录一、前言二、代码目录三、代码解读3.1、文件描述3.2、代码框架四、关联矩阵计算4.1、ComputeLocationDistance4.2、ComputeDirectionDistance4.3、ComputeBboxSizeDistance4.4、ComputePointNumDistance4.5、ComputePointNumDistance4.6、result_distance五
- 计算机视觉实战项目3(图像分类+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A*路径规划+单目测距与测速+行人车辆计数等)
毕设阿力
计算机视觉目标检测目标跟踪
车辆跟踪及测距该项目一个基于深度学习和目标跟踪算法的项目,主要用于实现视频中的目标检测和跟踪。该项目使用了YOLOv5目标检测算法和DeepSORT目标跟踪算法,以及一些辅助工具和库,可以帮助用户快速地在本地或者云端上实现视频目标检测和跟踪!教程博客_传送门链接------->yolov5单目测距+速度测量+目标跟踪(算法介绍和代码)-CSDN博客yolov5deepsort行人/车辆(检测+计数
- DeepSORT算法实现车辆和行人跟踪计数和是否道路违规检测(代码+教程)
毕设阿力
算法
DeepSORT算法是一种用于目标跟踪的算法,它可以对车辆和行人进行跟踪计数,并且可以检测是否存在道路违规行为。该算法采用深度学习技术来提取特征,并使用卡尔曼滤波器来估计物体的速度和位置。DeepSORT算法通过首先使用目标检测算法来识别出场景中的车辆和行人,然后使用卷积神经网络(CNN)来提取物体的特征。接着,该算法使用余弦相似度来计算物体之间的相似度,并使用匈牙利算法来匹配跟踪器和检测器之间的
- yolov5 deepsort 行人/车辆(检测 +计数+跟踪+测距+测速)
毕设阿力
YOLO目标跟踪目标检测
YOLOv5和DeepSORT是两种常用的计算机视觉技术,它们可以结合使用以实现行人和车辆的目标检测和跟踪。这种技术在交通监控、智慧城市等领域中具有广泛的应用。YOLOv5是一种基于深度学习的目标检测算法,它可以实现高效的目标检测和分类。与传统的目标检测算法相比,YOLOv5具有更快的检测速度和更高的准确率。而DeepSORT则是一种基于多目标跟踪的算法,它可以对相邻帧之间的目标进行跟踪,并输出目
- [MOT Challenge]官方生成多目标跟踪算法性能评价指标结果,解决test数据集没有gt文件和官网注册问题
Bartender_Jill
目标跟踪人工智能计算机视觉
文章目录⭐⭐⭐内容修正前言一、账号注册1.不要用QQ或163或gmail邮箱2.正常注册流程二、上传测试结果的流程1.使用步骤总结⭐⭐⭐内容修正我先前于2023/4/5日的时候在文章里提到:“提交到官网的文件需要包含测试后的训练集结果和测试后的测试集结果”,该结论经过测试后发现有误。个人于2023/12/8日在评论区的提醒下对MOTChallenge的内容提交进行了重新测试,发现提交到官网的文件并
- 数字信号处理7——点到向量的距离
注释远方
数字信号处理算法
目录一、前言二、点到线段的最短距离——向量法三、点到直线的最短距离——直线法四、点到直线最短距离——向量法一、前言其实在工程应用中很多情况下计算点到直线或者点到线段的距离,比如在unity3d游戏软件设计中计算任意形状路径起点和终点连线距离最远的点,比如用于雷达聚类后在多目标跟踪算法中计算哪个sensor距离track最近,另外还需要知道要计算的点位于直线的哪一侧,这些计算在游戏开发或者数字信号后
- 深度视觉目标跟踪进展综述-论文笔记
pzb19841116
计算机视觉目标跟踪人工智能计算机视觉
中科大学报上的一篇综述,总结得很详细,整理了相关笔记。1引言目标跟踪旨在基于初始帧中指定的感兴趣目标(一般用矩形框表示),在后续帧中对该目标进行持续的定位。基于深度学习的跟踪算法,采用的框架包括相关滤波器、分类式网络、双路网络等。处理跟踪任务的角度,分为基于匹配思路的双路网络和基于二分类的辨别式跟踪器。最初的深度跟踪算法聚焦于相关滤波器,通过深度学习的特征+相关滤波器实现。基于双路网络跟踪算法那,
- FastDeploy项目简介,使用其进行(图像分类、目标检测、语义分割、文本检测|orc部署)
万里鹏程转瞬至
深度学习python库使用目标检测深度学习模型部署
FastDeploy是一款全场景、易用灵活、极致高效的AI推理部署工具,支持云边端部署。提供超过160+Text,Vision,Speech和跨模态模型开箱即用的部署体验,并实现端到端的推理性能优化。包括物体检测、字符识别(OCR)、人脸、人像扣图、多目标跟踪系统、NLP、StableDiffusion文图生成、TTS等几十种任务场景,满足开发者多场景、多硬件、多平台的产业部署需求。1、FastD
- 基于卡尔曼滤波的平面轨迹优化
点PY
机器人导航定位c++卡尔曼滤波
文章目录概要卡尔曼滤波代码主函数代码CMakeLists.txt概要在进行目标跟踪时,算法实时测量得到的目标平面位置,是具有误差的,连续观测,所形成的轨迹如下图所示,需要对其进行噪声滤除。这篇博客将使用卡尔曼滤波,对轨迹进行优化。优化的结果为黄色线。卡尔曼滤波代码#include
- RT-DETR原理与简介(干翻YOLO的最新目标检测项目)
毕设阿力
YOLO目标检测人工智能
RT-DETR(Real-TimeDetection,Embedding,andTracking)是一种基于Transformer的实时目标检测、嵌入和跟踪模型。它通过结合目标检测、特征嵌入和目标跟踪三个任务,实现了高效准确的实时目标识别和跟踪。RT-DETR的核心思想是将目标检测和目标跟踪这两个传统独立的任务进行统一建模,并利用Transformer网络进行特征提取和关联学习。相比于传统的两阶段
- 基于多传感器的后融合的目标跟踪如何实现?都有哪些基本流程?
自动驾驶之心
目标跟踪人工智能计算机视觉机器学习
点击下方卡片,关注“自动驾驶之心”公众号ADAS巨卷干货,即可获取讲师:Edison课程内容:基于多传感器后融合的目标跟踪(0.课前导学1.自动驾驶中的融合跟踪)笔记作者:王汝嘉0.课前导学0.1主讲人介绍0.2课程关键词0.3学习资料推荐1.自动驾驶中的融合跟踪1.1自动驾驶中的感知任务1.2多传感器融合的主要方法1.3多传感器融合跟踪的基本流程1.4多目标跟踪的数据集与性能指标以上内容均出自《
- 【目标跟踪】多相机环视跟踪
读书猿
目标跟踪人工智能自动驾驶
文章目录一、前言二、流程图三、实现原理3.1、初始化3.2、输入3.3、初始航迹3.4、航迹预测3.5、航迹匹配3.6、输出结果四、c++代码五、总结一、前言多相机目标跟踪主要是为了实现360度跟踪。单相机检测存在左右后的盲区视野。在智能驾驶领域,要想靠相机实现无人驾驶,相机必须360度无死角全覆盖。博主提供一种非深度学习方法,采用kalman滤波+匈牙利匹配方式实现环视跟踪。有兴趣可以参考往期【
- 互联网加竞赛 基于机器视觉的车道线检测
Mr.D学长
pythonjava
文章目录1前言2先上成果3车道线4问题抽象(建立模型)5帧掩码(FrameMask)6车道检测的图像预处理7图像阈值化8霍夫线变换9实现车道检测9.1帧掩码创建9.2图像预处理9.2.1图像阈值化9.2.2霍夫线变换最后1前言优质竞赛项目系列,今天要分享的是基于深度学习的视频多目标跟踪实现该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/d
- Unity之Cinemachine教程
passionyxt
Unityunity游戏引擎TimelineCinemachine相机跟随轨迹相机拍摄相机
前言Cinemachine是Unity引擎的一个高级相机系统,旨在简化和改善游戏中的相机管理。Cinemachine提供了一组强大而灵活的工具,可用于创建令人印象深刻的视觉效果,使开发人员能够更轻松地掌控游戏中的摄像机行为。主要功能和特性包括:1.虚拟摄像机系统:Cinemachine引入了虚拟摄像机的概念,允许开发人员使用相机组件的虚拟实例,而不必直接操作实际摄像机。2.目标跟踪:Cinemac
- 『论文阅读|2024 WACV 多目标跟踪Deep-EloU|纯中文版』
Dymc
论文深度学习深度学习
论文题目:IterativeScale-UpExpansionIoUandDeepFeaturesAssociationforMulti-ObjectTrackinginSports论文特点:作者提出了一种迭代扩展的ExpansionIoU和深度特征关联方法Deep-EIoU,用于体育场景中的多目标跟踪,旨在解决非线性、不规则运动、相似外观的在线短时多目标跟踪问题,实验表明,提出的方法对于提高跟踪
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分