预训练模型
参考博客:
https://www.cnblogs.com/vactor/p/9820604.html
https://lijiancheng0614.github.io/2017/08/22/2017_08_22_TensorFlow-Object-Detection-API/
https://www.jianshu.com/p/86894ccaa407
下载链接:https://github.com/tensorflow/models
我们尝试的是models/research/objection部分
我们把整个Models项目下载下来,github上直接下载或者使用git命令:
git clone https://github.com/tensorflow/models
我们使用的主要是models/research/object_detection/object_detection_tutorial.ipynb这个文件。
由于github上的文件大小有限制,所以使用一个叫做Google Protocol Buffer(Protobuf)的标准储存数据,tensorflow和protobuf都是谷歌的项目,所以在tensorflow中需要用到protobuf并不奇怪。protobuf的优点是可以编译成 C++、Java、Python 三种语言,也就是一份protobuf可以变成三种语言形式,这非常方便,而且节省空间。
使用conda基本操作,进入环境。
之后安装protofbuf包:
conda install protobuf
安装完后:
(重要的事情说三遍!!!)
在 models/research 目录下的终端执行:!!!
在 models/research 目录下的终端执行:!!!
在 models/research 目录下的终端执行:!!!
protoc object_detection/protos/*.proto --python_out=.
我尝试运行ipynb文件,结果运行时提示服务正重启,貌似挂掉了。于是把相同的代码转移到pycharm上,修改了几点后成功。
matplotlib在jupyter notebook的写法和pycharm上的写法不同,需要在from matplotlib import pyplot as plt之前添加
import matplotlib
matplotlib.use("TkAgg")
我还稍微改了改图片显示的部分,解决了白屏显示的问题。
自己建了一个目录叫test_out_images,用以存运行结果,而不是使用show方法。
我还添加了控制台输出的代码,好分析结果。
解决了显示的warning,添加两行代码即可:
# 解决warning问题
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
此外,为了看mobilenet有多快,我添加了time库中的计时函数。
把object_detection_tutorial.ipynb转换为pycharm代码如下,另外,我也试过参考链接中的方法,实测1有效,2无效。
其中MODEL_NAME需要我们修改,我们可以选择任何在https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md中的模型名字。当然你也可以不依靠代码中的下载功能,先下载对应模型到同级目录下。
import time
import matplotlib
matplotlib.use("TkAgg")
import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
# 解决问题
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
from distutils.version import StrictVersion
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image
# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")
from object_detection.utils import ops as utils_ops
if StrictVersion(tf.__version__) < StrictVersion('1.12.0'):
raise ImportError('Please upgrade your TensorFlow installation to v1.12.*.')
# This is needed to display the images.
# %matplotlib inline
from utils import label_map_util
from utils import visualization_utils as vis_util
# What model to download.
MODEL_NAME = 'ssdlite_mobilenet_v2_coco_2018_05_09'
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_FROZEN_GRAPH = MODEL_NAME + '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')
print("downloading...")
opener = urllib.request.URLopener()
opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
file_name = os.path.basename(file.name)
if 'frozen_inference_graph.pb' in file_name:
tar_file.extract(file, os.getcwd())
print("end...")
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape((im_height, im_width, 3)).astype(np.uint8)
# For the sake of simplicity we will use only 2 images:
# image1.jpg
# image2.jpg
# If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.
PATH_TO_TEST_IMAGES_DIR = 'test_images'
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(1, 3) ]
# Size, in inches, of the output images.
IMAGE_SIZE = (12, 8)
def run_inference_for_single_image(image, graph):
with graph.as_default():
with tf.Session() as sess:
# Get handles to input and output tensors
ops = tf.get_default_graph().get_operations()
all_tensor_names = {output.name for op in ops for output in op.outputs}
tensor_dict = {}
for key in [
'num_detections', 'detection_boxes', 'detection_scores',
'detection_classes', 'detection_masks'
]:
tensor_name = key + ':0'
if tensor_name in all_tensor_names:
tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(
tensor_name)
if 'detection_masks' in tensor_dict:
# The following processing is only for single image
detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
# Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
detection_masks, detection_boxes, image.shape[0], image.shape[1])
detection_masks_reframed = tf.cast(
tf.greater(detection_masks_reframed, 0.5), tf.uint8)
# Follow the convention by adding back the batch dimension
tensor_dict['detection_masks'] = tf.expand_dims(
detection_masks_reframed, 0)
image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')
# Run inference
output_dict = sess.run(tensor_dict,
feed_dict={image_tensor: np.expand_dims(image, 0)})
# all outputs are float32 numpy arrays, so convert types as appropriate
output_dict['num_detections'] = int(output_dict['num_detections'][0])
output_dict['detection_classes'] = output_dict[
'detection_classes'][0].astype(np.uint8)
output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
output_dict['detection_scores'] = output_dict['detection_scores'][0]
if 'detection_masks' in output_dict:
output_dict['detection_masks'] = output_dict['detection_masks'][0]
return output_dict
print("test begin")
number = 1
for image_path in TEST_IMAGE_PATHS:
time_start = time.time()
print("image_path:",image_path)
image = Image.open(image_path)
fig = plt.figure()
# ax = fig.add_subplot(121)
# ax.imshow(image)
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
image_np = load_image_into_numpy_array(image)
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
output_dict = run_inference_for_single_image(image_np, detection_graph)
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
output_dict['detection_boxes'],
output_dict['detection_classes'],
output_dict['detection_scores'],
category_index,
instance_masks=output_dict.get('detection_masks'),
use_normalized_coordinates=True,
line_thickness=8)
ax = fig.add_subplot(111)
ax.imshow(image_np) # 以灰度图显示图片
# plt.axis("off")#不显示刻度
plt.savefig("test_out_images/image"+str(number)+".jpg")
number+=1
# plt.show(image) # 显示刚才所画的所有操作
# 结果显示
print("结果显示")
print("----------.----------.----------.----------")
# print(len(output_dict['detection_scores'])) #100
for i in range(100):
if (output_dict['detection_scores'][i] == 0.0):
continue
print("框坐标[%.2f,%.2f,%.2f,%.2f], 类别:%s, 概率%.2f"%(output_dict['detection_boxes'][i][0], output_dict['detection_boxes'][i][1], output_dict['detection_boxes'][i][2], output_dict['detection_boxes'][i][3]
, category_index[output_dict['detection_classes'][i]]
, output_dict['detection_scores'][i]))
time_end = time.time()
print('totally cost', time_end - time_start)
print("test end")
在运行代码时,会遇到很多的错误,例如这题语句错了:
from nets import inception_v2
可以改为:
from slim.nets import inception_v2