Faster_RCNN 3.模型准备(下)

总结自论文:Faster_RCNN,与Pytorch代码:

本文主要介绍代码第二部分:model/ , 首先分析一些主要理论操作,然后在代码分析里详细介绍其具体实现。

首先在参考文章的基础上进一步详细绘制了模型的流程图。在 上一篇博客中介绍了模型的上半部分,本文将对模型的下半部分做一介绍。

Faster_RCNN 3.模型准备(下)_第1张图片

                                                  Faster-RCNN流程图

1.  roi_module.py

from collections import namedtuple
from string import Template

import cupy, torch
import cupy as cp
import torch as t
from torch.autograd import Function

from model.utils.roi_cupy import kernel_backward, kernel_forward

Stream = namedtuple('Stream', ['ptr'])


@cupy.util.memoize(for_each_device=True)
def load_kernel(kernel_name, code, **kwargs):
    cp.cuda.runtime.free(0)
    code = Template(code).substitute(**kwargs)
    kernel_code = cupy.cuda.compile_with_cache(code)
    return kernel_code.get_function(kernel_name)


CUDA_NUM_THREADS = 1024


def GET_BLOCKS(N, K=CUDA_NUM_THREADS):
    return (N + K - 1) // K


class RoI(Function):
    """
    NOTE:only CUDA-compatible
    """

    def __init__(self, outh, outw, spatial_scale):
        self.forward_fn = load_kernel('roi_forward', kernel_forward)
        self.backward_fn = load_kernel('roi_backward', kernel_backward)
        self.outh, self.outw, self.spatial_scale = outh, outw, spatial_scale

    def forward(self, x, rois):
        # NOTE: MAKE SURE input is contiguous too
        x = x.contiguous()
        rois = rois.contiguous()
        self.in_size = B, C, H, W = x.size()
        self.N = N = rois.size(0)
        output = t.zeros(N, C, self.outh, self.outw).cuda()
        self.argmax_data = t.zeros(N, C, self.outh, self.outw).int().cuda()
        self.rois = rois
        args = [x.data_ptr(), rois.data_ptr(),
                output.data_ptr(),
                self.argmax_data.data_ptr(),
                self.spatial_scale, C, H, W,
                self.outh, self.outw,
                output.numel()]
        stream = Stream(ptr=torch.cuda.current_stream().cuda_stream)
        self.forward_fn(args=args,
                        block=(CUDA_NUM_THREADS, 1, 1),
                        grid=(GET_BLOCKS(output.numel()), 1, 1),
                        stream=stream)
        return output

    def backward(self, grad_output):
        ##NOTE: IMPORTANT CONTIGUOUS
        # TODO: input
        grad_output = grad_output.contiguous()
        B, C, H, W = self.in_size
        grad_input = t.zeros(self.in_size).cuda()
        stream = Stream(ptr=torch.cuda.current_stream().cuda_stream)
        args = [grad_output.data_ptr(),
                self.argmax_data.data_ptr(),
                self.rois.data_ptr(),
                grad_input.data_ptr(),
                self.N, self.spatial_scale, C, H, W, self.outh, self.outw,
                grad_input.numel()]
        self.backward_fn(args=args,
                         block=(CUDA_NUM_THREADS, 1, 1),
                         grid=(GET_BLOCKS(grad_input.numel()), 1, 1),
                         stream=stream
                         )
        return grad_input, None


class RoIPooling2D(t.nn.Module):

    def __init__(self, outh, outw, spatial_scale):
        super(RoIPooling2D, self).__init__()
        self.RoI = RoI(outh, outw, spatial_scale)

    def forward(self, x, rois):
        return self.RoI(x, rois)


def test_roi_module():
    ## fake data###
    B, N, C, H, W, PH, PW = 2, 8, 4, 32, 32, 7, 7

    bottom_data = t.randn(B, C, H, W).cuda()
    bottom_rois = t.randn(N, 5)
    bottom_rois[:int(N / 2), 0] = 0
    bottom_rois[int(N / 2):, 0] = 1
    bottom_rois[:, 1:] = (t.rand(N, 4) * 100).float()
    bottom_rois = bottom_rois.cuda()
    spatial_scale = 1. / 16
    outh, outw = PH, PW

    # pytorch version
    module = RoIPooling2D(outh, outw, spatial_scale)
    x = t.autograd.Variable(bottom_data, requires_grad=True)
    rois = t.autograd.Variable(bottom_rois)
    output = module(x, rois)
    output.sum().backward()

    def t2c(variable):
        npa = variable.data.cpu().numpy()
        return cp.array(npa)

    def test_eq(variable, array, info):
        cc = cp.asnumpy(array)
        neq = (cc != variable.data.cpu().numpy())
        assert neq.sum() == 0, 'test failed: %s' % info

    # chainer version,if you're going to run this
    # pip install chainer 
    import chainer.functions as F
    from chainer import Variable
    x_cn = Variable(t2c(x))

    o_cn = F.roi_pooling_2d(x_cn, t2c(rois), outh, outw, spatial_scale)
    test_eq(output, o_cn.array, 'forward')
    F.sum(o_cn).backward()
    test_eq(x.grad, x_cn.grad, 'backward')
    print('test pass')
View Code

主要利用cupy实现ROI Pooling的前向传播和反向传播。NMS和ROI pooling利用了:cupychainer 没用过,占个坑先。

其主要任务是对于一张图象得到的feature map(512, w/16, h/16),然后利用sample_roi的bbox坐标去在特征图上裁剪下来所有roi对应的特征图(训练:128, 512, w/16, h/16)、(测试:300,512,w/16,h/16)。

 

2 .  region_proposal_network.py

import numpy as np
from torch.nn import functional as F
import torch as t
from torch import nn

from model.utils.bbox_tools import generate_anchor_base
from model.utils.creator_tool import ProposalCreator


class RegionProposalNetwork(nn.Module):
    """Region Proposal Network introduced in Faster R-CNN.

    This is Region Proposal Network introduced in Faster R-CNN [#]_.
    This takes features extracted from images and propose
    class agnostic bounding boxes around "objects".

    .. [#] Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun. \
    Faster R-CNN: Towards Real-Time Object Detection with \
    Region Proposal Networks. NIPS 2015.

    Args:
        in_channels (int): The channel size of input.
        mid_channels (int): The channel size of the intermediate tensor.
        ratios (list of floats): This is ratios of width to height of
            the anchors.
        anchor_scales (list of numbers): This is areas of anchors.
            Those areas will be the product of the square of an element in
            :obj:`anchor_scales` and the original area of the reference
            window.
        feat_stride (int): Stride size after extracting features from an
            image.
        initialW (callable): Initial weight value. If :obj:`None` then this
            function uses Gaussian distribution scaled by 0.1 to
            initialize weight.
            May also be a callable that takes an array and edits its values.
        proposal_creator_params (dict): Key valued paramters for
            :class:`model.utils.creator_tools.ProposalCreator`.

    .. seealso::
        :class:`~model.utils.creator_tools.ProposalCreator`

    """

    def __init__(
            self, in_channels=512, mid_channels=512, ratios=[0.5, 1, 2],
            anchor_scales=[8, 16, 32], feat_stride=16,
            proposal_creator_params=dict(),
    ):
        super(RegionProposalNetwork, self).__init__()
        self.anchor_base = generate_anchor_base(
            anchor_scales=anchor_scales, ratios=ratios)
        self.feat_stride = feat_stride
        self.proposal_layer = ProposalCreator(self, **proposal_creator_params)
        n_anchor = self.anchor_base.shape[0]
        self.conv1 = nn.Conv2d(in_channels, mid_channels, 3, 1, 1)
        self.score = nn.Conv2d(mid_channels, n_anchor * 2, 1, 1, 0)
        self.loc = nn.Conv2d(mid_channels, n_anchor * 4, 1, 1, 0)
        normal_init(self.conv1, 0, 0.01)
        normal_init(self.score, 0, 0.01)
        normal_init(self.loc, 0, 0.01)

    def forward(self, x, img_size, scale=1.):
        """Forward Region Proposal Network.

        Here are notations.

        * :math:`N` is batch size.
        * :math:`C` channel size of the input.
        * :math:`H` and :math:`W` are height and witdh of the input feature.
        * :math:`A` is number of anchors assigned to each pixel.

        Args:
            x (~torch.autograd.Variable): The Features extracted from images.
                Its shape is :math:`(N, C, H, W)`.
            img_size (tuple of ints): A tuple :obj:`height, width`,
                which contains image size after scaling.
            scale (float): The amount of scaling done to the input images after
                reading them from files.

        Returns:
            (~torch.autograd.Variable, ~torch.autograd.Variable, array, array, array):

            This is a tuple of five following values.

            * **rpn_locs**: Predicted bounding box offsets and scales for \
                anchors. Its shape is :math:`(N, H W A, 4)`.
            * **rpn_scores**:  Predicted foreground scores for \
                anchors. Its shape is :math:`(N, H W A, 2)`.
            * **rois**: A bounding box array containing coordinates of \
                proposal boxes.  This is a concatenation of bounding box \
                arrays from multiple images in the batch. \
                Its shape is :math:`(R', 4)`. Given :math:`R_i` predicted \
                bounding boxes from the :math:`i` th image, \
                :math:`R' = \\sum _{i=1} ^ N R_i`.
            * **roi_indices**: An array containing indices of images to \
                which RoIs correspond to. Its shape is :math:`(R',)`.
            * **anchor**: Coordinates of enumerated shifted anchors. \
                Its shape is :math:`(H W A, 4)`.

        """
        n, _, hh, ww = x.shape
        anchor = _enumerate_shifted_anchor(
            np.array(self.anchor_base),
            self.feat_stride, hh, ww)

        n_anchor = anchor.shape[0] // (hh * ww)
        h = F.relu(self.conv1(x))

        rpn_locs = self.loc(h)
        # UNNOTE: check whether need contiguous
        # A: Yes
        rpn_locs = rpn_locs.permute(0, 2, 3, 1).contiguous().view(n, -1, 4)
        rpn_scores = self.score(h)
        rpn_scores = rpn_scores.permute(0, 2, 3, 1).contiguous()
        rpn_fg_scores = \
            rpn_scores.view(n, hh, ww, n_anchor, 2)[:, :, :, :, 1].contiguous()
        rpn_fg_scores = rpn_fg_scores.view(n, -1)
        rpn_scores = rpn_scores.view(n, -1, 2)

        rois = list()
        roi_indices = list()
        for i in range(n):
            roi = self.proposal_layer(
                rpn_locs[i].cpu().data.numpy(),
                rpn_fg_scores[i].cpu().data.numpy(),
                anchor, img_size,
                scale=scale)
            batch_index = i * np.ones((len(roi),), dtype=np.int32)
            rois.append(roi)
            roi_indices.append(batch_index)

        rois = np.concatenate(rois, axis=0)
        roi_indices = np.concatenate(roi_indices, axis=0)
        return rpn_locs, rpn_scores, rois, roi_indices, anchor


def _enumerate_shifted_anchor(anchor_base, feat_stride, height, width):
    # Enumerate all shifted anchors:
    #
    # add A anchors (1, A, 4) to
    # cell K shifts (K, 1, 4) to get
    # shift anchors (K, A, 4)
    # reshape to (K*A, 4) shifted anchors
    # return (K*A, 4)

    # !TODO: add support for torch.CudaTensor
    # xp = cuda.get_array_module(anchor_base)
    # it seems that it can't be boosed using GPU
    import numpy as xp
    shift_y = xp.arange(0, height * feat_stride, feat_stride)
    shift_x = xp.arange(0, width * feat_stride, feat_stride)
    shift_x, shift_y = xp.meshgrid(shift_x, shift_y)
    shift = xp.stack((shift_y.ravel(), shift_x.ravel(),
                      shift_y.ravel(), shift_x.ravel()), axis=1)

    A = anchor_base.shape[0]
    K = shift.shape[0]
    anchor = anchor_base.reshape((1, A, 4)) + \
             shift.reshape((1, K, 4)).transpose((1, 0, 2))
    anchor = anchor.reshape((K * A, 4)).astype(np.float32)
    return anchor


def _enumerate_shifted_anchor_torch(anchor_base, feat_stride, height, width):
    # Enumerate all shifted anchors:
    #
    # add A anchors (1, A, 4) to
    # cell K shifts (K, 1, 4) to get
    # shift anchors (K, A, 4)
    # reshape to (K*A, 4) shifted anchors
    # return (K*A, 4)

    # !TODO: add support for torch.CudaTensor
    # xp = cuda.get_array_module(anchor_base)
    import torch as t
    shift_y = t.arange(0, height * feat_stride, feat_stride)
    shift_x = t.arange(0, width * feat_stride, feat_stride)
    shift_x, shift_y = xp.meshgrid(shift_x, shift_y)
    shift = xp.stack((shift_y.ravel(), shift_x.ravel(),
                      shift_y.ravel(), shift_x.ravel()), axis=1)

    A = anchor_base.shape[0]
    K = shift.shape[0]
    anchor = anchor_base.reshape((1, A, 4)) + \
             shift.reshape((1, K, 4)).transpose((1, 0, 2))
    anchor = anchor.reshape((K * A, 4)).astype(np.float32)
    return anchor


def normal_init(m, mean, stddev, truncated=False):
    """
    weight initalizer: truncated normal and random normal.
    """
    # x is a parameter
    if truncated:
        m.weight.data.normal_().fmod_(2).mul_(stddev).add_(mean)  # not a perfect approximation
    else:
        m.weight.data.normal_(mean, stddev)
        m.bias.data.zero_()
View Code

这个脚本主要利用之前介绍的类与函数实现RPN网络:RegionProposalNetwork

因为是网络,所以继承自pytorch中的nn.Module

RPN网络流程我们之前介绍过一部分,这里完整的实现整个网络。

首先初始化网络的结构:特征(N,512,h,w)输入进来(原图像的大小:16*h,16*w),首先是加pad的512个3*3大小卷积核,输出仍为(N,512,h,w)。然后左右两边各有一个1*1卷积。左路为18个1*1卷积,输出为(N,18,h,w),即所有anchor的0-1类别概率(h*w约为2400,h*w*9约为20000)。右路为36个1*1卷积,输出为(N,36,h,w),即所有anchor的回归位置参数。

前向传播:输入特征即feature map,调用函数_enumerate_shifted_anchor生成全部20000个anchor。然后特征经过卷积,在经过两路卷积分别输出rpn_locs, rpn_scores。然后rpn_locs, rpn_scores作为ProposalCreator的输入产生2000个rois,同时还有 roi_indices,这个 roi_indices在此代码中是多余的,因为我们实现的是batch_siae=1的网络,一个batch只会输入一张图象。如果多张图象的话就需要存储索引以找到对应图像的roi。

注:函数_enumerate_shifted_anchor 介绍过了,就是利用9个anchor_base来生成所有20000个anchor的坐标。函数normal_init即对网络权重初始化。

 

3.  faster_rcnn.py

from __future__ import division
import torch as t
import numpy as np
import cupy as cp
from utils import array_tool as at
from model.utils.bbox_tools import loc2bbox
from model.utils.nms import non_maximum_suppression

from torch import nn
from data.dataset import preprocess
from torch.nn import functional as F
from utils.config import opt


class FasterRCNN(nn.Module):
    """Base class for Faster R-CNN.

    This is a base class for Faster R-CNN links supporting object detection
    API [#]_. The following three stages constitute Faster R-CNN.

    1. **Feature extraction**: Images are taken and their \
        feature maps are calculated.
    2. **Region Proposal Networks**: Given the feature maps calculated in \
        the previous stage, produce set of RoIs around objects.
    3. **Localization and Classification Heads**: Using feature maps that \
        belong to the proposed RoIs, classify the categories of the objects \
        in the RoIs and improve localizations.

    Each stage is carried out by one of the callable
    :class:`torch.nn.Module` objects :obj:`feature`, :obj:`rpn` and :obj:`head`.

    There are two functions :meth:`predict` and :meth:`__call__` to conduct
    object detection.
    :meth:`predict` takes images and returns bounding boxes that are converted
    to image coordinates. This will be useful for a scenario when
    Faster R-CNN is treated as a black box function, for instance.
    :meth:`__call__` is provided for a scnerario when intermediate outputs
    are needed, for instance, for training and debugging.

    Links that support obejct detection API have method :meth:`predict` with
    the same interface. Please refer to :meth:`predict` for
    further details.

    .. [#] Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun. \
    Faster R-CNN: Towards Real-Time Object Detection with \
    Region Proposal Networks. NIPS 2015.

    Args:
        extractor (nn.Module): A module that takes a BCHW image
            array and returns feature maps.
        rpn (nn.Module): A module that has the same interface as
            :class:`model.region_proposal_network.RegionProposalNetwork`.
            Please refer to the documentation found there.
        head (nn.Module): A module that takes
            a BCHW variable, RoIs and batch indices for RoIs. This returns class
            dependent localization paramters and class scores.
        loc_normalize_mean (tuple of four floats): Mean values of
            localization estimates.
        loc_normalize_std (tupler of four floats): Standard deviation
            of localization estimates.

    """

    def __init__(self, extractor, rpn, head,
                loc_normalize_mean = (0., 0., 0., 0.),
                loc_normalize_std = (0.1, 0.1, 0.2, 0.2)
    ):
        super(FasterRCNN, self).__init__()
        self.extractor = extractor
        self.rpn = rpn
        self.head = head

        # mean and std
        self.loc_normalize_mean = loc_normalize_mean
        self.loc_normalize_std = loc_normalize_std
        self.use_preset('evaluate')

    @property
    def n_class(self):
        # Total number of classes including the background.
        return self.head.n_class

    def forward(self, x, scale=1.):
        """Forward Faster R-CNN.

        Scaling paramter :obj:`scale` is used by RPN to determine the
        threshold to select small objects, which are going to be
        rejected irrespective of their confidence scores.

        Here are notations used.

        * :math:`N` is the number of batch size
        * :math:`R'` is the total number of RoIs produced across batches. \
            Given :math:`R_i` proposed RoIs from the :math:`i` th image, \
            :math:`R' = \\sum _{i=1} ^ N R_i`.
        * :math:`L` is the number of classes excluding the background.

        Classes are ordered by the background, the first class, ..., and
        the :math:`L` th class.

        Args:
            x (autograd.Variable): 4D image variable.
            scale (float): Amount of scaling applied to the raw image
                during preprocessing.

        Returns:
            Variable, Variable, array, array:
            Returns tuple of four values listed below.

            * **roi_cls_locs**: Offsets and scalings for the proposed RoIs. \
                Its shape is :math:`(R', (L + 1) \\times 4)`.
            * **roi_scores**: Class predictions for the proposed RoIs. \
                Its shape is :math:`(R', L + 1)`.
            * **rois**: RoIs proposed by RPN. Its shape is \
                :math:`(R', 4)`.
            * **roi_indices**: Batch indices of RoIs. Its shape is \
                :math:`(R',)`.

        """
        img_size = x.shape[2:]

        h = self.extractor(x)
        rpn_locs, rpn_scores, rois, roi_indices, anchor = \
            self.rpn(h, img_size, scale)
        roi_cls_locs, roi_scores = self.head(
            h, rois, roi_indices)
        return roi_cls_locs, roi_scores, rois, roi_indices

    def use_preset(self, preset):
        """Use the given preset during prediction.

        This method changes values of :obj:`self.nms_thresh` and
        :obj:`self.score_thresh`. These values are a threshold value
        used for non maximum suppression and a threshold value
        to discard low confidence proposals in :meth:`predict`,
        respectively.

        If the attributes need to be changed to something
        other than the values provided in the presets, please modify
        them by directly accessing the public attributes.

        Args:
            preset ({'visualize', 'evaluate'): A string to determine the
                preset to use.

        """
        if preset == 'visualize':
            self.nms_thresh = 0.3
            self.score_thresh = 0.7
        elif preset == 'evaluate':
            self.nms_thresh = 0.3
            self.score_thresh = 0.05
        else:
            raise ValueError('preset must be visualize or evaluate')

    def _suppress(self, raw_cls_bbox, raw_prob):
        bbox = list()
        label = list()
        score = list()
        # skip cls_id = 0 because it is the background class
        for l in range(1, self.n_class):
            cls_bbox_l = raw_cls_bbox.reshape((-1, self.n_class, 4))[:, l, :]
            prob_l = raw_prob[:, l]
            mask = prob_l > self.score_thresh
            cls_bbox_l = cls_bbox_l[mask]
            prob_l = prob_l[mask]
            keep = non_maximum_suppression(
                cp.array(cls_bbox_l), self.nms_thresh, prob_l)
            keep = cp.asnumpy(keep)
            bbox.append(cls_bbox_l[keep])
            # The labels are in [0, self.n_class - 2].
            label.append((l - 1) * np.ones((len(keep),)))
            score.append(prob_l[keep])
        bbox = np.concatenate(bbox, axis=0).astype(np.float32)
        label = np.concatenate(label, axis=0).astype(np.int32)
        score = np.concatenate(score, axis=0).astype(np.float32)
        return bbox, label, score

    def predict(self, imgs,sizes=None,visualize=False):
        """Detect objects from images.

        This method predicts objects for each image.

        Args:
            imgs (iterable of numpy.ndarray): Arrays holding images.
                All images are in CHW and RGB format
                and the range of their value is :math:`[0, 255]`.

        Returns:
           tuple of lists:
           This method returns a tuple of three lists,
           :obj:`(bboxes, labels, scores)`.

           * **bboxes**: A list of float arrays of shape :math:`(R, 4)`, \
               where :math:`R` is the number of bounding boxes in a image. \
               Each bouding box is organized by \
               :math:`(y_{min}, x_{min}, y_{max}, x_{max})` \
               in the second axis.
           * **labels** : A list of integer arrays of shape :math:`(R,)`. \
               Each value indicates the class of the bounding box. \
               Values are in range :math:`[0, L - 1]`, where :math:`L` is the \
               number of the foreground classes.
           * **scores** : A list of float arrays of shape :math:`(R,)`. \
               Each value indicates how confident the prediction is.

        """
        self.eval()
        if visualize:
            self.use_preset('visualize')
            prepared_imgs = list()
            sizes = list()
            for img in imgs:
                size = img.shape[1:]
                img = preprocess(at.tonumpy(img))
                prepared_imgs.append(img)
                sizes.append(size)
        else:
             prepared_imgs = imgs 
        bboxes = list()
        labels = list()
        scores = list()
        for img, size in zip(prepared_imgs, sizes):
            img = t.autograd.Variable(at.totensor(img).float()[None], volatile=True)
            scale = img.shape[3] / size[1]
            roi_cls_loc, roi_scores, rois, _ = self(img, scale=scale)
            # We are assuming that batch size is 1.
            roi_score = roi_scores.data
            roi_cls_loc = roi_cls_loc.data
            roi = at.totensor(rois) / scale

            # Convert predictions to bounding boxes in image coordinates.
            # Bounding boxes are scaled to the scale of the input images.
            mean = t.Tensor(self.loc_normalize_mean).cuda(). \
                repeat(self.n_class)[None]
            std = t.Tensor(self.loc_normalize_std).cuda(). \
                repeat(self.n_class)[None]

            roi_cls_loc = (roi_cls_loc * std + mean)
            roi_cls_loc = roi_cls_loc.view(-1, self.n_class, 4)
            roi = roi.view(-1, 1, 4).expand_as(roi_cls_loc)
            cls_bbox = loc2bbox(at.tonumpy(roi).reshape((-1, 4)),
                                at.tonumpy(roi_cls_loc).reshape((-1, 4)))
            cls_bbox = at.totensor(cls_bbox)
            cls_bbox = cls_bbox.view(-1, self.n_class * 4)
            # clip bounding box
            cls_bbox[:, 0::2] = (cls_bbox[:, 0::2]).clamp(min=0, max=size[0])
            cls_bbox[:, 1::2] = (cls_bbox[:, 1::2]).clamp(min=0, max=size[1])

            prob = at.tonumpy(F.softmax(at.tovariable(roi_score), dim=1))

            raw_cls_bbox = at.tonumpy(cls_bbox)
            raw_prob = at.tonumpy(prob)

            bbox, label, score = self._suppress(raw_cls_bbox, raw_prob)
            bboxes.append(bbox)
            labels.append(label)
            scores.append(score)

        self.use_preset('evaluate')
        self.train()
        return bboxes, labels, scores

    def get_optimizer(self):
        """
        return optimizer, It could be overwriten if you want to specify 
        special optimizer
        """
        lr = opt.lr
        params = []
        for key, value in dict(self.named_parameters()).items():
            if value.requires_grad:
                if 'bias' in key:
                    params += [{'params': [value], 'lr': lr * 2, 'weight_decay': 0}]
                else:
                    params += [{'params': [value], 'lr': lr, 'weight_decay': opt.weight_decay}]
        if opt.use_adam:
            self.optimizer = t.optim.Adam(params)
        else:
            self.optimizer = t.optim.SGD(params, momentum=0.9)
        return self.optimizer

    def scale_lr(self, decay=0.1):
        for param_group in self.optimizer.param_groups:
            param_group['lr'] *= decay
        return self.optimizer
View Code

此脚本定义了Faster-RCNN的基本类FasterRCNN。Faster-RCNN的三个步骤:

  • 特征提取:输入一张图片得到其特征图feature map
  • RPN:给定特征图后产生一系列RoIs
  • 定位与分类:利用这些RoIs对应的特征图对这些RoIs中的类别进行分类,并提升定位精度

在类FasterRCNN中便初始化了这三个重要步骤:

  • self.extractor
  • self.rpn
  • self.head

函数forward实现前向传播:

Faster_RCNN 3.模型准备(下)_第2张图片              Faster_RCNN 3.模型准备(下)_第3张图片

 

                            Faster-RCNN前向传播网络                                                                                      边界框数量变化

注:AnchorTargetCreatorProposalTargetCreator是为了生成训练的目标,只在训练阶段用到,ProposalCreator是RPN为Fast R-CNN生成RoIs,在训练和测试阶段都会用到。所以测试阶段ProposalCreator为Fast R-CNN生成了300个RoIs,不经ProposalCreator直接送给RoIHead网络。而训练阶段2000个RoI再经ProposalCreator得到128个RoI。(别忘了ProposalCreator的用途是为训练RoIHead网络分配ground truth的,测试阶段当然不需要了

预测过程

函数predict实现了对测试集的图片预测,也是batch为1,即每次输入一张图片。

首先设置为eval()模式,然后对读入的图片求尺度scale,因为输入的图像经预处理就会有缩放,所以需记录缩放因子scale,这个缩放因子在ProposalCreator筛选roi时有用到,即将所有候选框按这个缩放因子映射回原图,超出原图边框的趋于将被截断。上图中经过前向传播后会输出roi_cls_locsroi_scores。同时我们还需要输入到RoIhead的128个rois。因为ProposalCreator对loc做了归一化(-mean /std)处理,所以这里需要再*std+mean,此时的位置参数loc为roi_cls_loc。然后将这128个roi利用roi_cls_loc进行微调,得到新的cls_bbox。对于分类得分roi_scores,我们需要将其经过softmax后转为概率prob。值得注意的是我们此时得到的是对所有输入128个roi以及位置参数得分预处理,下面将筛选出最后最终的预测结果。

上面步骤是对网络RoIhead网络输出的预处理,函数_suppress将得到真正的预测结果。此函数是一个按类别的循环,l从1至20(0类为背景类)。即预测思想是按20个类别顺序依次验证,如果有满足该类的预测结果,则记录,否则转入下一类(一张图中也就几个类别而已)。例如筛选预测出第1类的结果,首先在cls_bbox中将所有128个预测第1类的bbox坐标找出,然后从prob中找出128个第1类的概率。因为阈值为0.7,也即概率>0.7的所有边框初步被判定预测正确,记录下来。然而可能有多个边框预测第1类中同一个物体同类中一个物体只需一个边框,所以需再经基于类的NMS后使得每类每个物体只有一个边框,至此第1类预测完成,记录第1类的所有边框坐标、标签、置信度。接着下一类...,直至20类都记录下来,那么一张图片(也即一个batch)的预测也就结束了。

经测试,GTX1080、32G内存在可视化情况下,VOC2007 一个epoch:trainval 5011张36分钟完成,测试集test4952张13分钟完成

最后定义了优化器optimizer:对于需要求导的参数 按照是否含bias赋予不同的学习率。默认是使用SGD,可选Adam,不过需更小的学习率。

 

 4. faster_rcnn_vgg16.py

定义了类FasterRCNNVGG16,继承自上面的类FasterRCNN

首先引入VGG16,然后拆分为特征提取网络和分类网络。冻结分类网络的前几层,不进行反向传播。

然后实现VGG16RoIHead网络。实现输入特征图、rois、roi_indices,输出roi_scls_locs和roi_scores。

FasterRCNNVGG16分别对特征VGG16的特征提取部分、分类部分、RPN网络、VGG16RoIHead网络进行了实例化。

此外在对VGG16RoIHead网络的全连接层权重初始化过程中,按照图像是否为truncated分了两种初始化分方法。

 

 

Reference:

从编程实现角度学习Faster R-CNN(附极简实现)

深度 | 像玩乐高一样拆解Faster R-CNN:详解目标检测的实现过程

转载于:https://www.cnblogs.com/king-lps/p/8992311.html

你可能感兴趣的:(Faster_RCNN 3.模型准备(下))