基于opencv的Bernsen二值化算法

Bernsen算法是比较出名的二值化算法,网上很多Bernsen代码是基于Matlab的,本人觉得其速度比较慢,所以便基于OpenCV改写了其算法,具体参考的博客链接已经忘记了,希望博主原谅。如果缺少某些函数,比如最大值最小值函数,可以参考本人其他博客,里面会提供。废话不多说,直接上代码:

/** @brief 得到矩阵中的最大值与最小值

@param m 单通道CV_8UC1类型矩阵
@param maxValue 最大值
@param minValue 最小值
*/
static void GetMatMaxMin(const cv::Mat& m, int& maxValue, int& minValue)
{
    CV_Assert(m.type() == CV_8UC1);

    maxValue = INT_MIN;
    minValue = INT_MAX;

    for (int y = 0; y < m.rows; ++y)
    {
        for (int x = 0; x < m.cols; ++x)
        {
            int v = m.at(y, x);
            if (v > maxValue) maxValue = v;
            if (v < minValue) minValue = v;
        }
    }
}

void AutoThresholder::Bernsen(const cv::Mat & src, cv::Mat & dst, cv::Size wndSize)
{
    CV_Assert(src.type() == CV_8UC1);
    CV_Assert((wndSize.width % 2 == 1) && (wndSize.height % 2 == 1));
    CV_Assert((wndSize.width <= src.cols) && (wndSize.height <= src.rows));

    cv::Mat meanMat = cv::Mat::zeros(src.rows, src.cols, CV_8UC1);

    for (int y = wndSize.height / 2; y <= src.rows - wndSize.height / 2 - 1; ++y)
    {
        for (int x = wndSize.width / 2; x <= src.cols - wndSize.width / 2 - 1; ++x)
        {
            int value = src.at(y, x);
            cv::Point center = cv::Point(x, y);
            cv::Point topLeftPoint = cv::Point(x - wndSize.width / 2, y - wndSize.height / 2);
            cv::Rect wnd = cv::Rect(topLeftPoint.x, topLeftPoint.y, wndSize.width, wndSize.height);
            int maxValue = 0;
            int minValue = 0;
            cv::Mat roiMat = src(wnd);
            GetMatMaxMin(roiMat, maxValue, minValue);
            int meanValue = (maxValue + minValue) / 2.0;
            meanMat.at(y, x) = meanValue;
        }
    }

    // 阈值分割
    dst = cv::Mat::zeros(src.rows, src.cols, CV_8UC1);
    for (int y = 0; y < src.rows; ++y)
    {
        for (int x = 0; x < src.cols; ++x)
        {
            int value = src.at(y, x);
            int meanValue = meanMat.at(y, x);
            if (value > meanValue)
            {
                dst.at(y, x) = 255;
            }
            else
            {
                dst.at(y, x) = 0;
            }
        }
    }
}

void AutoThresholder::Bernsen(const cv::Mat & src, cv::Mat & dst, cv::Size wndSize, int differMax, int meanMax)
{
    CV_Assert(src.type() == CV_8UC1);
    CV_Assert((wndSize.width % 2 == 1) && (wndSize.height % 2 == 1));
    CV_Assert((wndSize.width <= src.cols) && (wndSize.height <= src.rows));

    // 计算均值矩阵和差异矩阵
    cv::Mat meanMat = cv::Mat::zeros(src.rows, src.cols, CV_8UC1);
    cv::Mat differMat = cv::Mat::zeros(src.rows, src.cols, CV_8UC1);
    for (int y = wndSize.height / 2; y <= src.rows - wndSize.height / 2 - 1; ++y)
    {
        for (int x = wndSize.width / 2; x <= src.cols - wndSize.width / 2 - 1; ++x)
        {
            int value = src.at(y, x);
            cv::Point center = cv::Point(x, y);
            cv::Point topLeftPoint = cv::Point(x - wndSize.width / 2, y - wndSize.height / 2);
            cv::Rect wnd = cv::Rect(topLeftPoint.x, topLeftPoint.y, wndSize.width, wndSize.height);
            int maxValue = 0;
            int minValue = 0;
            cv::Mat roiMat = src(wnd);
            GetMatMaxMin(roiMat, maxValue, minValue);
            int meanValue = (maxValue + minValue) / 2.0;
            int differValue = maxValue - minValue;
            meanMat.at(y, x) = meanValue;
            differMat.at(y, x) = differValue;
        }
    }

    // 赋值
    dst = cv::Mat::zeros(src.rows, src.cols, CV_8UC1);
    for (int y = 0; y < differMat.rows; ++y)
    {
        for (int x = 0; x < differMat.cols; ++x)
        {
            int differValue = differMat.at(y, x);
            if (differValue > differMax)
            {
                // blog写的很迷糊, 直说meanValue是阈值
                // 本人认为是边界部分,可以是0,也可以是255
                dst.at(y, x) = 255;
            }
            else if (differValue < differMax)
            {
                int meanValue = meanMat.at(y, x);
                if (meanValue > meanMax)
                {
                    dst.at(y, x) = 255;
                }
                else
                {
                    dst.at(y, x) = 0;
                }
            }
            else
            {
                // TODO
                dst.at(y, x) = 0;
            }
        }
    }
}

你可能感兴趣的:(未分类)