粒子滤波 演示与opencv代码

[转载]http://blog.csdn.net/onezeros/article/details/6319180

粒子滤波通俗介绍:对于(不限于)非线性非高斯问题,目标是知道x(t-1)的概率确定x(t)的概率。根据目标x(t-1)的概率产生若干粒子,将每个粒子xi放入状态转移方程,产生预测值yi,利用观测值和评价方程计算若x(t)取yi,获得观测值Y的概率,以此条件概率为yi的权重,求yi的权重和即为x(t)的概率的预测值。重采样,去掉权重低的粒子,复制权重高的粒子。反复。

 

对于目标跟踪:

1、选定目标,计算目标的特征,如颜色直方图;

2、洒出粒子,方式有很多,比如目标前方多撒一些,后方少撒一点。

3、计算每个粒子区域的特征,用和1一样的特征,如颜色直方图。

4、比较每个粒子的颜色直方图与目标颜色直方图的相似性,作为权重。

5、粒子坐标的权重和,作为目标的预测位置。

6、重采样,去掉小权重的粒子,复制权重大的粒子,保持粒子数量。即在权重大的地方撒出更多粒子。

7、转入第2步,完成跟踪。

从以上可以看出,粒子越多预测将约准确。

以上为本人的理解,不正确的地方,请高手批评指正。 粒子滤波貌似没有卡尔曼滤波的用观测值的纠正过程。不过计算权重那一步应该起到类似的作用。

 

粒子滤波的理论实在是太美妙了,用一组不同权重的随机状态来逼近复杂的概率密度函数。其再非线性、非高斯系统中具有优良的特性。 

 本文中给出的例子跟 我的另一篇博文是同一个应用例子,都是对二维坐标进行平滑、预测

使用方法:


1.创建并初始化

const int stateNum=4;//状态数
 const int measureNum=2;//测量变量数
 const int sampleNum=2000;//粒子数

 CvConDensation* condens = cvCreateConDensation(stateNum,measureNum,sampleNum);

在不影响性能的情况下,粒子数量越大,系统表现的越稳定

其他初始化内容请参考learning opencv


2.预测
3.更新例子可信度,也就是权重。本例中更新方法与learning opencv中有所不同,想看代码
4.更新CvConDensation

 

代码:

[cpp] view plain copy print ?
  1. #include   
  2. #include   
  3. #include   
  4. #include   
  5.   
  6. #include   
  7. #include   
  8. #include   
  9. using namespace std;  
  10.   
  11. const int winHeight=600;  
  12. const int winWidth=800;  
  13.   
  14.   
  15. CvPoint mousePosition=cvPoint(winWidth>>1,winHeight>>1);  
  16.   
  17. //mouse event callback  
  18. void mouseEvent(int event,int x,int y,int flags,void *param )  
  19. {  
  20.     if (event==CV_EVENT_MOUSEMOVE) {  
  21.         mousePosition=cvPoint(x,y);  
  22.     }  
  23. }  
  24.   
  25. int main (void)  
  26. {  
  27.     //1.condensation setup  
  28.     const int stateNum=4;  
  29.     const int measureNum=2;  
  30.     const int sampleNum=2000;  
  31.   
  32.     CvConDensation* condens = cvCreateConDensation(stateNum,measureNum,sampleNum);  
  33.     CvMat* lowerBound;  
  34.     CvMat* upperBound;  
  35.     lowerBound = cvCreateMat(stateNum, 1, CV_32F);  
  36.     upperBound = cvCreateMat(stateNum, 1, CV_32F);  
  37.     cvmSet(lowerBound,0,0,0.0 );   
  38.     cvmSet(upperBound,0,0,winWidth );  
  39.     cvmSet(lowerBound,1,0,0.0 );   
  40.     cvmSet(upperBound,1,0,winHeight );  
  41.     cvmSet(lowerBound,2,0,0.0 );   
  42.     cvmSet(upperBound,2,0,0.0 );  
  43.     cvmSet(lowerBound,3,0,0.0 );   
  44.     cvmSet(upperBound,3,0,0.0 );  
  45.     float A[stateNum][stateNum] ={  
  46.         1,0,1,0,  
  47.         0,1,0,1,  
  48.         0,0,1,0,  
  49.         0,0,0,1  
  50.     };  
  51.     memcpy(condens->DynamMatr,A,sizeof(A));  
  52.     cvConDensInitSampleSet(condens, lowerBound, upperBound);  
  53.   
  54.     CvRNG rng_state = cvRNG(0xffffffff);  
  55.     for(int i=0; i < sampleNum; i++){  
  56.         condens->flSamples[i][0] = float(cvRandInt( &rng_state ) % winWidth); //width  
  57.         condens->flSamples[i][1] = float(cvRandInt( &rng_state ) % winHeight);//height  
  58.     }  
  59.   
  60.     CvFont font;  
  61.     cvInitFont(&font,CV_FONT_HERSHEY_SCRIPT_COMPLEX,1,1);  
  62.   
  63.     char* winName="condensation";  
  64.     cvNamedWindow(winName);  
  65.     cvSetMouseCallback(winName,mouseEvent);  
  66.     IplImage* img=cvCreateImage(cvSize(winWidth,winHeight),8,3);  
  67.     bool isPredictOnly=false;//trigger for prediction only,press SPACEBAR  
  68.     while (1){  
  69.         //2.condensation prediction  
  70.         CvPoint predict_pt=cvPoint((int)condens->State[0],(int)condens->State[1]);  
  71.   
  72.         float variance[measureNum]={0};       
  73.         //get variance/standard deviation of each state  
  74.         for (int i=0;i
  75.             //sum  
  76.             float sumState=0;  
  77.             for (int j=0;jSamplesNum;j++) {  
  78.                 sumState+=condens->flSamples[i][j];  
  79.             }  
  80.             //average  
  81.             sumState/=sampleNum;  
  82.             //variance  
  83.             for (int j=0;jSamplesNum;j++) {  
  84.                 variance[i]+=(condens->flSamples[i][j]-sumState)*  
  85.                     (condens->flSamples[i][j]-sumState);  
  86.             }  
  87.             variance[i]/=sampleNum-1;  
  88.         }  
  89.         //3.update particals confidence  
  90.         CvPoint pt;  
  91.         if (isPredictOnly) {  
  92.             pt=predict_pt;  
  93.         }else{  
  94.             pt=mousePosition;  
  95.         }  
  96.         for (int i=0;iSamplesNum;i++) {  
  97.             float probX=(float)exp(-1*(pt.x-condens->flSamples[i][0])  
  98.                 *(pt.x-condens->flSamples[i][0])/(2*variance[0]));  
  99.             float probY=(float)exp(-1*(pt.y-condens->flSamples[i][1])  
  100.                 *(pt.y-condens->flSamples[i][1])/(2*variance[1]));  
  101.             condens->flConfidence[i]=probX*probY;  
  102.         }  
  103.         //4.update condensation  
  104.         cvConDensUpdateByTime(condens);  
  105.           
  106.         //draw   
  107.         cvSet(img,cvScalar(255,255,255,0));  
  108.         cvCircle(img,predict_pt,5,CV_RGB(0,255,0),3);//predicted point with green  
  109.         char buf[256];  
  110.         sprintf_s(buf,256,"predicted position:(%3d,%3d)",predict_pt.x,predict_pt.y);  
  111.         cvPutText(img,buf,cvPoint(10,30),&font,CV_RGB(0,0,0));  
  112.         if (!isPredictOnly) {  
  113.             cvCircle(img,mousePosition,5,CV_RGB(255,0,0),3);//current position with red  
  114.             sprintf_s(buf,256,"real position :(%3d,%3d)",mousePosition.x,mousePosition.y);  
  115.             cvPutText(img,buf,cvPoint(10,60),&font,CV_RGB(0,0,0));  
  116.         }  
  117.           
  118.         cvShowImage(winName, img);  
  119.         int key=cvWaitKey(30);  
  120.         if (key==27){//esc     
  121.             break;  
  122.         }else if (key==' ') {//trigger for prediction  
  123.             //isPredict=!isPredict;  
  124.             if (isPredictOnly) {  
  125.                 isPredictOnly=false;  
  126.             }else{  
  127.                 isPredictOnly=true;  
  128.             }  
  129.         }  
  130.     }        
  131.   
  132.     cvReleaseImage(&img);  
  133.     cvReleaseConDensation(&condens);  
  134.     return 0;  
  135. }  
#include #include #include #include #include #include #include using namespace std; const int winHeight=600; const int winWidth=800; CvPoint mousePosition=cvPoint(winWidth>>1,winHeight>>1); //mouse event callback void mouseEvent(int event,int x,int y,int flags,void *param ) { if (event==CV_EVENT_MOUSEMOVE) { mousePosition=cvPoint(x,y); } } int main (void) { //1.condensation setup const int stateNum=4; const int measureNum=2; const int sampleNum=2000; CvConDensation* condens = cvCreateConDensation(stateNum,measureNum,sampleNum); CvMat* lowerBound; CvMat* upperBound; lowerBound = cvCreateMat(stateNum, 1, CV_32F); upperBound = cvCreateMat(stateNum, 1, CV_32F); cvmSet(lowerBound,0,0,0.0 ); cvmSet(upperBound,0,0,winWidth ); cvmSet(lowerBound,1,0,0.0 ); cvmSet(upperBound,1,0,winHeight ); cvmSet(lowerBound,2,0,0.0 ); cvmSet(upperBound,2,0,0.0 ); cvmSet(lowerBound,3,0,0.0 ); cvmSet(upperBound,3,0,0.0 ); float A[stateNum][stateNum] ={ 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1 }; memcpy(condens->DynamMatr,A,sizeof(A)); cvConDensInitSampleSet(condens, lowerBound, upperBound); CvRNG rng_state = cvRNG(0xffffffff); for(int i=0; i < sampleNum; i++){ condens->flSamples[i][0] = float(cvRandInt( &rng_state ) % winWidth); //width condens->flSamples[i][1] = float(cvRandInt( &rng_state ) % winHeight);//height } CvFont font; cvInitFont(&font,CV_FONT_HERSHEY_SCRIPT_COMPLEX,1,1); char* winName="condensation"; cvNamedWindow(winName); cvSetMouseCallback(winName,mouseEvent); IplImage* img=cvCreateImage(cvSize(winWidth,winHeight),8,3); bool isPredictOnly=false;//trigger for prediction only,press SPACEBAR while (1){ //2.condensation prediction CvPoint predict_pt=cvPoint((int)condens->State[0],(int)condens->State[1]); float variance[measureNum]={0}; //get variance/standard deviation of each state for (int i=0;iSamplesNum;j++) { sumState+=condens->flSamples[i][j]; } //average sumState/=sampleNum; //variance for (int j=0;jSamplesNum;j++) { variance[i]+=(condens->flSamples[i][j]-sumState)* (condens->flSamples[i][j]-sumState); } variance[i]/=sampleNum-1; } //3.update particals confidence CvPoint pt; if (isPredictOnly) { pt=predict_pt; }else{ pt=mousePosition; } for (int i=0;iSamplesNum;i++) { float probX=(float)exp(-1*(pt.x-condens->flSamples[i][0]) *(pt.x-condens->flSamples[i][0])/(2*variance[0])); float probY=(float)exp(-1*(pt.y-condens->flSamples[i][1]) *(pt.y-condens->flSamples[i][1])/(2*variance[1])); condens->flConfidence[i]=probX*probY; } //4.update condensation cvConDensUpdateByTime(condens); //draw cvSet(img,cvScalar(255,255,255,0)); cvCircle(img,predict_pt,5,CV_RGB(0,255,0),3);//predicted point with green char buf[256]; sprintf_s(buf,256,"predicted position:(%3d,%3d)",predict_pt.x,predict_pt.y); cvPutText(img,buf,cvPoint(10,30),&font,CV_RGB(0,0,0)); if (!isPredictOnly) { cvCircle(img,mousePosition,5,CV_RGB(255,0,0),3);//current position with red sprintf_s(buf,256,"real position :(%3d,%3d)",mousePosition.x,mousePosition.y); cvPutText(img,buf,cvPoint(10,60),&font,CV_RGB(0,0,0)); } cvShowImage(winName, img); int key=cvWaitKey(30); if (key==27){//esc break; }else if (key==' ') {//trigger for prediction //isPredict=!isPredict; if (isPredictOnly) { isPredictOnly=false; }else{ isPredictOnly=true; } } } cvReleaseImage(&img); cvReleaseConDensation(&condens); return 0; }

 

粒子滤波 视频演示:

演示中粒子数分别为100,200,2000

请仔细观测效果

http://v.youku.com/v_show/id_XMjU4MzE0ODgw.html

demo snapshot:

 

你可能感兴趣的:(粒子滤波,演示,opencv代码)