- 神经网络常见激活函数 7-ELU函数
亲持红叶
神经网络常见激活函数深度学习机器学习人工智能数学建模神经网络
文章目录ELU函数+导函数函数和导函数图像优缺点pytorch中的ELU函数tensorflow中的ELU函数ELU指数线性单元:ELU(ExponentialLinearUnit)函数+导函数ELU函数ELU={xx>=0α(ex−1)x=0\\\alpha(e^x-1)\quad&x=0x=0αexx=0\\\alphae^x\quad&x=0x0,x,alpha*(np.exp(x)-1))
- (python)如何看自己安装的包的版本
9677
Pythonpython开发语言
linuxpiplist|grep"numpy\|scipy\|tensorflow\|keras"windows环境下piplist|findstr"numpyscipytensorflowkeras"输出numpy1.13.1scipy0.19.1tensorflow-cpu2.4.0tensorflow-estimator2.4.0tensorflow-gpu2.4.0
- 【野生动物识别系统】Python+深度学习+人工智能+卷积神经网络算法+TensorFlow+ResNet+图像识别
图像识别深度学习
一、介绍动物识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对18种动物数据集进行训练,最后得到一个识别精度较高的模型。并基于Django框架,开发网页端操作平台,实现用户上传一张动物图片识别其名称。目前可识别的动物有:'乌龟','云豹','变色龙','壁虎','狞猫','狮子','猎豹','美洲狮','美洲虎','老虎','蜥蜴','
- 【蔬菜识别】Python+深度学习+CNN卷积神经网络算法+TensorFlow+人工智能+模型训练
图像识别深度学习人工智能
一、介绍蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆','大白菜','大葱','莲藕','菠菜','西红柿','韭菜','黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。二、系统效果图片展示三、演示视
- 基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
一、介绍蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)","毒鹅膏菌(Amanita)","牛肝菌(Boletus)","网状菌(Cortinarius)","毒镰孢(Entoloma)","湿孢菌(Hygrocybe)","乳菇(Lactarius)","红菇(Russula)","
- 深度学习-电商推荐
小赖同学啊
人工智能深度学习人工智能
下面为你介绍使用深度学习实现电商推荐系统的代码示例。我们将构建一个基于神经网络的简单推荐模型,以用户的历史购买行为和商品特征为基础,预测用户对商品的偏好。这里我们使用Python的TensorFlow和Keras库来实现。问题分析电商推荐系统的核心目标是根据用户的历史行为和商品特征,预测用户对未购买商品的喜好程度,从而为用户推荐可能感兴趣的商品。我们将通过构建一个神经网络模型,输入用户特征和商品特
- 实践深度学习:构建一个简单的图像分类器
是Dream呀
深度学习人工智能
引言深度学习在图像识别领域取得了巨大的成功。本文将指导你如何使用深度学习框架来构建一个简单的图像分类器,我们将以Python和TensorFlow为例,展示从数据准备到模型训练的完整流程。环境准备在开始之前,请确保你的环境中安装了以下工具:Python3.xTensorFlow2.xNumPyMatplotlib(用于数据可视化)你可以通过以下命令安装所需的库:pipinstalltensorfl
- NVIDIA-docker Cheatsheet
weixin_30758821
运维开发工具shell
TensorFlowDockerrequirementsInstallDockeronyourlocalhostmachine.ForGPUsupportonLinux,installnvidia-docker.Note:Torunthedockercommandwithoutsudo,createthedockergroupandaddyouruser.Fordetails,seethepost
- 人工智能在制造业的具体应用案例-总纲
局外人_Jia
人工智能c#大数据
人工智能在制造业的具体应用案例,结合C#语言实现的技术方案和示例代码:1.预测性维护(PredictiveMaintenance)通过分析设备传感器数据,预测设备故障并提前安排维护。技术方案数据采集:使用C#通过IoT协议(如MQTT、OPCUA)实时采集设备传感器数据(温度、振动等)。模型训练:使用ML.NET或TensorFlow.NET训练回归模型,预测设备剩余寿命。实时预测:将模型部署到C
- TensorFlow 学习笔记--基础文本分类
小陈加油中···
tensorflow学习笔记
电影评论文本分类官网的教程代码有一些问题:1.调用文件夹时,官网的调用方式有错。2.调用vectorize_layer没有返回,3.模型编译时,metics写错了。4.最后新的数据要转为张量才能用来预测。这笔记里代码里都改过来了文章目录电影评论文本分类导入库下载IMDB数据集加载数据集对训练数据进行预处理创建神经网络模型编译模型训练模型评估模型导出模型对新数据进行预测参考:[基本文本分类](htt
- ChatTTS,一款基于Python的自然语言处理项目
m0_75259337
活动文章活动文章
####文章标题:热门GitCode项目推荐:从技术角度分析ChatTTS 在GitCode平台上,有许多优秀的开源项目供我们学习和使用。今天,我将为大家推荐一个非常热门且具有很高技术含量的项目——ChatTTS。 **项目介绍**:ChatTTS是一个基于Python的自然语言处理项目,它能够将文本转换为语音。该项目使用TensorFlow和Gensim库进行语音合成和文本分析,使得生成
- 神经网络常见激活函数 6-RReLU函数
亲持红叶
神经网络常见激活函数神经网络人工智能深度学习机器学习pytorch激活函数
文章目录RReLU函数+导函数函数和导函数图像优缺点pytorch中的RReLU函数tensorflow中的RReLU函数RReLU随机修正线性单元:RandomizedLeakyReLU函数+导函数RReLU函数RReLU={xx≥0axx=0,inputs,alpha*inputs)#创建RReLU激活函数层rrelu=RReLU()#生成随机输入x=tf.random.normal([2])
- pycharm中安装scikit-image报错
LittleWhite123
PYTHONpythonnumpypiptensorflow
pycharm中安装scikit-image:从pycharm中或者terminal中,都安装不成功环境:windows10python==3.6.6tensorflow==1.10.0解决方案:1.按照提示,升级pip,报错:CouldnotinstallpackagesduetoanEnvironmentError:[WinError5]拒绝访问。Considerusingthe`--user
- 人工智能应用-智能驾驶精确的目标检测和更高级的路径规划
小赖同学啊
人工智能人工智能目标检测计算机视觉
实现更精确的目标检测和更高级的路径规划策略是自动驾驶领域的核心任务。以下是一个简化的示例,展示如何使用Python和常见的AI库(如TensorFlow、OpenCV和A*算法)来实现这些功能。1.环境准备首先,确保安装了以下库:pipinstalltensorflowopencv-pythonnumpymatplotlib2.目标检测(使用预训练的深度学习模型)目标检测可以使用预训练的深度学习模
- AI学习专题(一)LLM技术路线
王钧石的技术博客
大模型人工智能学习ai
阶段1:AI及大模型基础(1-2个月)数学基础线性代数(矩阵、特征值分解、SVD)概率论与统计(贝叶斯定理、极大似然估计)最优化方法(梯度下降、拉格朗日乘子法)编程&框架Python(NumPy、Pandas、Matplotlib)PyTorch&TensorFlow基础HuggingFaceTransformers入门深度学习基础机器学习基础(监督/无监督学习、正则化、过拟合)反向传播、优化器(
- TensorFlow 与 PyTorch 的直观区别
Cacciatore->
tensorflowpytorch人工智能python机器学习深度学习
背景TensorFlow与PyTorch都是比较流行的深度学习框架。tf由谷歌在2015年发布,而PyTorch则是FacecbookAI研究团队2016年在原来Torch的基础上发布的。tf采用的是静态计算图。这意味着在执行任何计算之前,你需要先定义好整个计算图,之后再执行。这种方式适合大规模生产环境,可以优化计算图以提高效率。tf的早期版本比较复杂,但在集成Keras库之后相当容易上手。PyT
- 【ubuntu下验证下菜品识别,训练,部署,验证 CNN + TensorFlow / PyTorch】
追心嵌入式
cnntensorflow
下来我会详细介绍如何在Ubuntu上运行你训练和部署的菜品识别模型,确保每一步都能理解并能在你的系统中运行。环境准备1.1安装必要的软件在Ubuntu上,首先需要安装Python和相关的依赖库:更新系统:打开终端,运行以下命令:bashsudoaptupdate&&sudoaptupgrade-y安装Python及pip:确保你的系统已经安装了Python3和pip,如果没有,可以使用以下命令安装
- ‘list‘ object has no attribute ‘mul‘
zslefour
ComfyUI
原来运行得好好的,突然出现错误:'list'objecthasnoattribute'mul',更换一个输入路径,又没问题,改一个路径,还是出现错误,很奇怪,后来又没有问题,记录一下。参考这文章《Fixing‘AttributeError:‘module’objecthasnoattribute‘mul’inTensorFlow》,发现TensorFlow是没有安装的,安装了依然报错。看上面出错窗
- pip3 install 报错 protobuf requires Python ‘>=3.7‘ but the running Python is 3.6.8
_Focus_
PythonTensorFlowtensorflowpython
解决方案:安装时指定protobuf版本pip3install--upgradetensorflow==1.14protobuf==3.10.0
- 完整的671B R1塞进本地,详尽教程来了!
datawhale
李锡涵DatawhaleDatawhale干货作者:李锡涵,编译:机器之心本文作者:李锡涵(XihanLi)作者简介:伦敦大学学院(UCL)计算机系博士研究生,谷歌开发者专家,主要研究方向为学习优化,在NeurIPS、ICLR、AAMAS、CIKM等会议发表过学术论文,CircuitTransformer作者,图书《简明的TensorFlow2》(https://tf.wiki)作者过年这几天,D
- 青少年编程与数学 02-008 Pyhon语言编程基础 26课题、常见框架
明月看潮生
编程与数学第02阶段青少年编程python编程与数学编程语言框架
青少年编程与数学02-008Pyhon语言编程基础26课题、常见框架一、Django二、Pandas三、NumPy四、TensorFlow五、PyTorch六、练习步骤1:安装Django步骤2:创建Django项目步骤3:创建Django应用步骤4:定义模型步骤5:创建数据库表步骤6:创建管理员账户步骤7:注册模型步骤8:创建视图步骤9:创建模板步骤10:配置URL步骤11:运行开发服务器课题摘
- AI编程工具合集
109702008
人工智能ai编程人工智能学习
GPT-4o(OpenAI)这里是一些知名和广泛使用的AI编程工具及其简要介绍:1.框架和库(FrameworksandLibraries)-TensorFlow:由谷歌开发的开源深度学习框架,支持多种平台,适合构建和训练复杂神经网络。-PyTorch:由Facebook的人工智能研究小组开发,也是一种开源深度学习库,因其动态计算图和较好的易用性而受欢迎。-Keras:一个高层神经网络API,可以
- 基于Pytorch的猫狗分类的代码演练
摸爬滚打的包菜
pytorch分类人工智能
前段时间在人工智能课上老师给我们介绍了一下卷积神经网络CNN,顺便在课上复现了猫狗分类的相关代码。这个代码是以tensorflow为框架训练的,由于之前一直没有系统的了解tensorflow框架和Pytorch框架的区别,得着今天闲来无事,了解了一下,顺便看看能不能自己用Pytorch框架来训练猫狗分类的代码。一.Tensorflow框架和Pytorch框架的区别Pytorch主要凭借其动态计算图
- MobileNet实战:tensorflow2
大厂在职_xzG
tensorflow人工智能python
2、导入需要的数据包,设置全局参数importnumpyasnpfromtensorflow.keras.optimizersimportAdamimportnumpyasnpfromtensorflow.keras.optimizersimportAdamimportcv2fromtensorflow.keras.preprocessing.imageimportimg_to_arrayfrom
- anaconda中安装tensorflow1.15以及Jupyter
hou_hbl
pythontensorflow深度学习
anaconda中安装tensorflow1.15以及Jupyter1.安装TensorFlow1.15tensorflow1.15+cuda10.0+cudnn7.4PackagesNotFoundError:Thefollowingpackagesarenotavailablefromcurrentchannelscondainstalltensorflow-gpu==1.152.安装jupy
- tensorflow模型继续训练??
小李飞刀李寻欢
pythonspeechdnntensorflow模型恢复继续训练global_step
之前训练的模型没有收敛就结束了,再次训练,增加训练次数是不是就会收敛了?有时,网上的参考答案并不能解决问题,因为每个人的细节不同,总有些关键细节问题决定成败。我的模型训练时的步骤有global_step,这个玩意是记录/标记ckpt的,表示哪一步产生的模型,我估计这个参数在模型中也保存了,因为我定义的是global_step=tf.Variable(0,dtype=tf.int32,trainab
- TensorFlow、把数字标签转化成onehot标签
dg989385783
在MNIST手写字数据集中,我们导入的数据和标签都是预先处理好的,但是在实际的训练中,数据和标签往往需要自己进行处理。以手写数字识别为例,我们需要将0-9共十个数字标签转化成onehot标签。例如:数字标签“6”转化为onehot标签就是[0,0,0,0,0,0,1,0,0,0].首先获取需要处理的标签的个数:batch_size=tf.size(labels)1假设输入了6张手写字图片,那么对应
- 使用Python和TensorFlow/Keras构建一个简单的CNN模型来识别手写数字
mosquito_lover1
pythontensorflowkeras
一个简单的图像识别项目代码示例,使用Python和TensorFlow/Keras库来训练一个基本的CNN模型,用于识别MNIST手写数字数据集,并将测试结果输出到HTML。代码运行效果截图:具体操作步骤:1.安装所需的库首先,确保你已经安装了所需的Python库:pipinstalltensorflownumpymatplotlibpandasjinja2TensorFlow:用于构建和训练深度
- python 3.6 tensorflow_无法在python 3.6中导入Tensorflow
weixin_39835178
python3.6tensorflow
我无法导入Tensorflow。我的GPUnvidia940mx和我正在使用python3.6。我安装的软件包是:absl-py(0.2.0)阿斯特(0.6.2)漂白剂(1.5.0)循环器(0.10.0)气(0.2.0)grpcio(1.11.0)html5lib(0.9999999)猕猴桃(1.0.1)降价(2.6.11)matplotlib(2.2.2)numpy的(1.14.2)opencv
- [未解决]tensorflow_datasets.core.download.download_manager.NonMatchingChecksumError:
爱生活爱自己爱学习
python硕士pythontensorflow
Extractioncompleted...:0file[1:53:39,?file/s]Traceback(mostrecentcalllast):File"E:/github/tf_models/tutorials/image/cifar10/cifar10_train.py",line126,intf.app.run()File"E:\software\Anaconda3\lib\site-
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh ickes@192.168.27.211
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_