验证码识别技术

此验证码识别技术有预处理、特征提取、神经网络识别几部分,参考过车牌识别技术。程序实现分样本下载器、用户交互程序、MLP建构程序三块,使用OpenCV,喜欢的可以留意下AnnMLP的使用方法,国内这方面的资料还是比较少的,欢迎交流QQ:13895354。

 

预处理技术是专门针对某种特定验证码设计的,其特点有:英文+数字,彩色,倾斜,无粘连,有不规则噪声,有删除线,至于具体哪家网站的验证码,我就不方便透露了

(用户交互程序)

#include #include #include #include using namespace std; int main( int argc, char** argv ) { cvNamedWindow("1"); cvNamedWindow("2"); IplConvKernel* se = cvCreateStructuringElementEx(2, 2, 1, 1, CV_SHAPE_CROSS); CvANN_MLP mlp; mlp.load( "mpl.xml" ); for(int i=1; i<=100; i++) { // 产生文件名 char fn[1024]; sprintf(fn, ".//sample//%d.jpg", i); // 读取图片 IplImage* gray = cvLoadImage(fn, CV_LOAD_IMAGE_GRAYSCALE); // 二值化 cvThreshold(gray, gray, 180, 255, CV_THRESH_BINARY | CV_THRESH_OTSU); // 去边框 cvRectangle(gray, cvPoint(0, 0), cvPoint(gray->width-1, gray->height-1), CV_RGB(255, 255, 255)); // 去噪 cvDilate(gray, gray, se); /* // 调整角度 cvShowImage("1", gray); IplImage* rote = cvCreateImage( cvGetSize(gray), IPL_DEPTH_8U, 1 ); double t = tan(10.0 / 180.0 * CV_PI); int w = gray->width; int h = gray->height; for(int i = 0; iimageData + gray->widthStep * i; unsigned char* lineRote = (unsigned char*)rote->imageData + rote->widthStep * i; for(int j = 0; j=10 )// 文字需要有10像素高度 { // 绘制该连通区域到character cvZero(gray); IplImage* character = cvCreateImage(cvSize(rect.width, rect.height), IPL_DEPTH_8U, 1); cvZero(character); cvDrawContours(character, p, CV_RGB(255, 255, 255), CV_RGB(0, 0, 0), -1, -1, 8, cvPoint(-rect.x, -rect.y)); // 归一化 IplImage* normal = cvCreateImage(cvSize(16, 16), IPL_DEPTH_8U, 1); cvResize(character, normal, CV_INTER_AREA); cvThreshold(normal, normal, 0, 255, CV_THRESH_BINARY | CV_THRESH_OTSU);// 修正 // 计算输入向量 float input[256]; for(int i=0; i<256; i++) input[i] = (normal->imageData[i]==-1); #if 0 // 用户输入结果 cvShowImage("2", normal); char c = cvWaitKey(0); if(c==27) return 0; // 编码0-9:0-9 a-z:10-35 unsigned char cc = 255; if(c>='A'&&c<='Z') cc=c-'A'+10; else if(c>='a'&&c<='z') cc=c-'a'+10; else if(c>='0'&&c<='9') cc=c-'0'; if(cc!=255) { // 转换成输出向量 float output[36]; for(int i=0; i<36; i++) output[i] = 0.0f; output[cc] = 1.0f; // 存储到批处理文件 static FILE* batch = fopen("batch", "wb"); fwrite(output, 4*36, 1, batch); fwrite(input, 4*256, 1, batch); static int count = 0; cout<h_next; } cout<

 

事实上更有价值的是OpenCV中的AnnMLP,其技术很成熟,参考了letter_recg范例程序

 (MLP建构程序)

#include #include using namespace std; void print_mat(CvMat& mat) { int count = 0; for(int i=0; i<4/*mat.rows*/; i++) { for(int j=0; jdata.fl, size-1, 1, f); CvMat outputs, inputs; cvGetCols(batch, &outputs, 0, 36); cvGetCols(batch, &inputs, 36, 36+256); // 新建MPL CvANN_MLP mlp; int layer_sz[] = { 256, 20, 36 }; CvMat layer_sizes = cvMat( 1, 3, CV_32S, layer_sz ); mlp.create( &layer_sizes ); // 训练 system( "time" ); mlp.train( &inputs, &outputs, NULL, NULL, CvANN_MLP_TrainParams(cvTermCriteria(CV_TERMCRIT_ITER,300,0.01), CvANN_MLP_TrainParams::RPROP, 0.01) ); system( "time" ); // 存储MPL mlp.save( "mpl.xml" ); // 测试 int right = 0; CvMat* output = cvCreateMat( 1, 36, CV_32F ); for(int i=0; i

 

上面的代码都是vc6控制台程序,OpenCV入门的都懂的吧。

你可能感兴趣的:(output,character,null,input,layer,system)