- cs231n_深度之眼第二次作业
Jie_Cheney
图像分类数据和label分别是什么?图像分类存在的问题与挑战?图像分类数据包括训练集测试集的数据,在有监督的问题中对于训练集数据来说是有label的,而测试集是等待我们去识别它的类别,不具有label。label就是分类标签,比如cifar10这个数据集,待分类的这10类数据我们可以写成1-10,或者0-9这就叫做label。图像分类存在的问题与挑战:光照,角度,形变,遮挡。使用python加载一
- 向量,矩阵和张量的导数 | 简单的数学
橘子学AI
前段时间看过一些矩阵求导的教程,在看过的资料中,尤其喜欢斯坦福大学CS231n卷积神经网络课程中提到的Erik这篇文章。循着他的思路,可以逐步将复杂的求导过程简化、再简化,直到发现其中有规律的部分。话不多说,一起来看看吧。作者:ErikLearned-Miller翻译:橘子来源:橘子AI笔记(datawitch)本文旨在帮助您学习向量、矩阵和高阶张量(三维或三维以上的数组)的求导方法,以及如何求对
- cs231n assignment1——SVM
柠檬山楂荷叶茶
cs231n支持向量机python机器学习
整体思路加载CIFAR-10数据集并展示部分数据数据图像归一化,减去均值(也可以再除以方差)svm_loss_naive和svm_loss_vectorized计算hinge损失,用拉格朗日法列hinge损失函数利用随机梯度下降法优化SVM在训练集和验证集计算准确率,保存最好的模型在测试集进行预测计算准确率加载展示划分数据集加载CIFAR-10数据集#LoadtherawCIFAR-10data.
- (2023版)斯坦福CS231n学习笔记:DL与CV教程 (12) | 视觉模型可视化与可解释性(Visualizing and Understanding)
女王の专属领地
计算机视觉#计算机视觉#学习笔记
前言笔记专栏:斯坦福CS231N:面向视觉识别的卷积神经网络(23)课程链接:https://www.bilibili.com/video/BV1xV411R7i5CS231n:深度学习计算机视觉(2017)中文笔记:https://zhuxiaoxia.blog.csdn.net/article/details/801551662023最新课程PPT:https://download.csdn.
- 2019-02-25~~2019-03-03 第十周周末复盘
仰望星空的小狗
一、任务清单1、刷leetcode题目(7道)2、听tensorflow,cs231n和cv课程3、技术文档输出4、恢复早起的作息二、反思1、自从年前工作非常忙,加上遇上一些郁闷的事情,导致年前到现在时间记录中断了很长一段时间。本周开始恢复时间记录,日打卡,周复盘。2、生活中不论谁,肯定会时不时遇上一些令人郁闷的事情,这些郁闷的事情很可能会打乱原本的生活节奏。但是,生活还有很长的路要走,不应该因为
- 训练神经网络(上)激活函数
笔写落去
深度学习神经网络人工智能深度学习
本文介绍几种激活函数,只作为个人笔记.观看视频为cs231n文章目录前言一、Sigmoid函数二、tanh函数三、ReLU函数四、LeakyReLU函数五、ELU函数六.在实际应用中寻找激活函数的做法总结前言激活函数是用来加入非线性因素的,提高神经网络对模型的表达能力,解决线性模型所不能解决的问题。一、Sigmoid函数这个函数大家应该熟悉在逻辑回归中曾用到这个sigmoid函数这个函数可以将负无
- 卷积神经网络
weixin_34283445
人工智能
https://zhuanlan.zhihu.com/p/27642620关于卷积神经网络的讲解,网上有很多精彩文章,且恐怕难以找到比斯坦福的CS231n还要全面的教程。所以这里对卷积神经网络的讲解主要是以不同的思考侧重展开,通过对卷积神经网络的分析,进一步理解神经网络变体中“因素共享”这一概念。注意:该文会跟其他的现有文章有很大的不同。读该文需要有本书前些章节作为预备知识,不然会有理解障碍。没看
- CS231n 作业答案
tech0ne
CS231n三次大作业:#第一次作业##原始包下载:作业一完成包地址:作业一JupyterNotebook结果:KNNSVMSoftmaxTwolayernetFeatures第二次作业原始包下载:作业二完成包地址:作业二JupyterNotebook结果:FullyConnectedNetsBatchNormalizationDropoutConvolutionalNetworksTensorf
- cs231n作业-assignment1
momentum_
AIpython机器学习numpy
assignment1(cs231n)文章目录assignment1(cs231n)KNN基础计算distances方法一:双层循环计算distances方法二:单层循环计算distances方法三:无循环根据dists找到每个测试样本的种类KNN模型汇总交叉验证KNN基础计算distances方法一:双层循环dists矩阵是(num_test,num_train)500*5000defcompu
- 【深度学习理论】(1) 损失函数
立Sir
深度学习理论机器学习人工智能神经网络深度学习损失函数
各位同学好,最近学习了CS231N斯坦福计算机视觉公开课,讲的太精彩了,和大家分享一下。已知一张图像属于各个类别的分数,我们希望图像属于正确分类的分数是最大的,那如何定量的去衡量呢,那就是损失函数的作用了。通过比较分数与真实标签的差距,构造损失函数,就可以定量的衡量模型的分类效果,进而进行后续的模型优化和评估。构造损失函数之后,我们的目标就是将损失函数的值最小化,使用梯度下降的方法求得损失函数对于
- 线性分类器--数据处理
骆驼穿针眼
计算机视觉与深度学习深度学习
数据集划分通常按照70%,20%,10%来分数据集数据处理斯坦福的线性分类器体验http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/
- 【CS231n】-学习笔记-1-Intro to Computer Vision, historical context.
Alice熹爱学习
计算机视觉计算机视觉CS231nDeepLearningPYTHON
Class:http://cs231n.stanford.eduSchedule:http://cs231n.stanford.edu/syllabus.htmlSlides:http://vision.stanford.edu/teaching/cs231n/slides/winter1516_lecture1.pdfVideo:https://www.youtube.com/watch?v=N
- 笔记00-杜克大学公开课,图像和视频处理:从火星到好莱坞
木木爱吃糖醋鱼
笔记内容介绍》ImageandVideoProcessing:FromMarstoHollywoodwithaStopattheHospital算起来是2017年中的时候,因为要搞深度学习的东西,就自学了斯坦福cs231n的神经网络的课。Youtube上有至少两期的公开课视频。好像从李飞飞离职之后,截止到2017年春季,就没再继续了。现在想想哪门课的内容挺多挺繁杂的。虽然是本科的课,最后好像每个学
- 向量对向量求导,链式法则
构建的乐趣
向量对向量求导
这还算不得向量微积分里多么主干的内容,只是一个小技术,但是数学推导很多时候就会用到。http://cs231n.stanford.edu/vecDerivs.pdf这个文献是一个好文献。另优秀翻译:https://zhuanlan.zhihu.com/p/142668996链式法则注意:这里的乘法变成了innerproduct推导过程中比较关键的点:除了利用这文献所讲的分量慢慢推,还有一个要点,首
- Win10上关于cs231n(2017)课后作业的环境配置
Diane小山
开始首先,这篇文章是针对那些想完成cs231n作业,但是觉得装linux双系统很麻烦的童鞋。cs231n作业的SetUp官方教程只针对了那些使用Unix(Ubuntu,Macos等)的人,对使用Windows的人十分不友好。安装anaconda百度一篇anaconda的安装教程,照着安装即可。这里需要提醒的有两点:国内的anaconda镜像能用的基本都挂了,所以还是老老实实去官方网站下载吧:)一定
- CS231N assignment2 SVM
weixin_30363509
数据结构与算法人工智能python
CS231NAssignment2SupportVectorMachineBegin本文主要介绍CS231N系列课程的第一项作业,写一个SVM无监督学习训练模型。课程主页:网易云课堂CS231N系列课程语言:Python3.61线形分类器以图像为例,一幅图像像素为32*32*3代表长32宽32有3通道的衣服图像,将其变为1*3072的一个向量,即该图像的特征向量。我们如果需要训练1000幅图像,那
- 【AI】斯坦福CS231n课程练习(1)—— KNN和SVM分类
李清焰
CS231nKNNSVM
文章目录一、前言1、CS231n是啥?2、本篇博客任务3、使用的数据集二、知识准备1、KNN是什么?2、SVM是什么?SVM的组成:三、实验——KNN和SVM分类1、KNN图片分类(重要步骤将在目录上体现)(1)在colab上切换目录,加载dataset(2)加载包、设置和外部模块(3)加载、初步处理数据(4)可视化打印一些图片看看我们的数据集长什么样(5)对测试、训练数据进行分组(6)创建KNN
- 深度学习系列之cs231n assignment1 KNN(二)
明曦君
深度学习python机器学习
写在前面:久经周折,终于能够将KNN系列给大家继续分享了,这次的内容来源于李飞飞教授团队的cs231n深度学习课程的作业1中的KNN研究,我会在全文我遇到困难的地方进行分享,以及一些想法。内容安排深度学习系列依托与cs231n的课程作业,因为只想练习编程,所以不对课程内容进行分享,仅针对编程内容进行分享。那么这一次的分享就是assignment1中K近邻分类器的使用,以及完成其中的四个问题,这四个
- cs231n assignment2(3)
没天赋的学琴
assignment2的第三部分,是熟悉深度学习框架pytorch或者tensorflow,这里选择的是使用pytorch框架。该部分主要通过三个层次:Barebones、ModuleAPI、SequentialAPI,来了解pytorch。Barebones在该层次中,需要利用pytorch所提供的一些函数,不仅需要定义神经网络的结构,同时还需编写网络的前向传播以及模型的训练部分;而参数的梯度可
- 第三十三周学习笔记
luputo
学习笔记
第三十三周学习笔记CS231nDeepLearningSoftwareCPUvsGPUCPU:Fewercores,buteachcoreismuchfasterandmuchmorecapable;greatatsequentialtasksGPU:Morecores,buteachcoreismuchslowerand“dumber”;greatforparalleltasks(matrixm
- CNN(卷积神经网络)、RNN(循环神经网络)、DNN,LSTM
weixin_34174132
人工智能
http://cs231n.github.io/neural-networks-1https://arxiv.org/pdf/1603.07285.pdfhttps://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/Appli
- CNN笔记:通俗理解卷积神经网络
I_O_fly
神经网络cnn神经网络深度学习
通俗理解卷积神经网络(cs231n与5月dl班课程笔记)1前言2012年我在北京组织过8期machinelearning读书会,那时“机器学习”非常火,很多人都对其抱有巨大的热情。当我2013年再次来到北京时,有一个词似乎比“机器学习”更火,那就是“深度学习”。本博客内写过一些机器学习相关的文章,但上一篇技术文章“LDA主题模型”还是写于2014年11月份,毕竟自2015年开始创业做在线教育后,太
- Knn算法与 Svm算法对比
一个不知名的码农
支持向量机算法机器学习
Knn算法与Svm算法对比这里首先借用一个博主所做的图表,讲的很有理有据(7条消息)[cs231n]KNN与SVM区别_Rookie’Program的博客-CSDN博客_knn和svm的区别这里我们来讲一下我对这两个算法的理解knn看起来就是比较简单的一个数学模型,就是划范围论,精细程度实际上可能没有svm好,并且测试量也不能大,数据一大,处理起来又很麻烦,预测效率也比较低。相反的svm和knn对
- 斯坦福大学CS520知识图谱系列课程学习笔记:第一讲什么是知识图谱
ngl567
随着知识图谱在人工智能各个领域的广泛使用,知识图谱受到越来越多AI研究人员的关注和学习,已经成为人工智能迈向认知系统的关键技术之一。之前,斯坦福大学的面向计算机视觉的CS231n和面向自然语言处理的CS224n成为了全球非常多AI研究人员的入门经典学习课程。因此,斯坦福大学于今年3月开设了一门专门面向知识图谱的系列课程CS520,官网课程页:https://web.stanford.edu/cla
- 北京邮电大学 计算机视觉与深度学习 鲁鹏 计算机视觉概述课程手迹
qinyaoze
机器学习CV手记计算机视觉人工智能深度学习
课程笔记计算机视觉=输入(认知神经科学-理论,运用方法&算法,硬件)+输出(机器人)课程:图像处理-CS131,图像结构-CS231a,图像理论-CS230/CS231nQ-象棋与人工智能的关系?IBM-深蓝,Google-AlphaGo>>机器赢得象棋胜利=强大的搜索算法目标:语义鸿沟,即建立图像像素核语义间的关系发展过程:系统出现-物种大繁荣>>理论研究-猫视觉神经>>积木世界>>MIT图像处
- 国外AI大牛推荐的10大最有帮助免费在线机器学习课程
机器学习与系统
woman_ml.jpg本文编译自twitter用户chipro斯坦福在线自学课程《概率与统计》:该课程涉及概率统计的基本概念,涵盖机器学习4个基本方面:探索性数据分析,产生数据,概率和推理。MIT的《线性代数》:这是我见过的最好的线性代数课程,由传奇教授GilbertStrang(吉尔伯特斯特朗)教授。斯坦福的CS231N:用于视觉识别的卷积神经网络:平衡理论与实践。课堂笔记写得很好,解释了不同
- CS231n学习笔记--计算机视觉历史回顾与介绍1
听城
CS231n简介首先我们来看看官方对这门课的介绍:计算机视觉在社会中已经逐渐普及,并广泛运用于搜索检索、图像理解、手机应用、地图导航、医疗制药、无人机和无人驾驶汽车等领域。而这些应用的核心技术就是图像分类、图像定位和图像探测等视觉识别任务。近期神经网络(也就是“深度学习”)方法上的进展极大地提升了这些代表当前发展水平的视觉识别系统的性能。本课程将深入讲解深度学习框架的细节问题,聚焦面向视觉识别任务
- 计算机视觉实战项目(图像分类+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别)
阿利同学
计算机视觉分类目标检测
图像分类教程博客_传送门链接:链接在本教程中,您将学习如何使用迁移学习训练卷积神经网络以进行图像分类。您可以在cs231n上阅读有关迁移学习的更多信息。本文主要目的是教会你如何自己搭建分类模型,耐心看完,相信会有很大收获。废话不多说,直切主题…首先们要知道深度学习大都包含了下面几个方面:1.加载(处理)数据2.网络搭建3.损失函数(模型优化)4模型训练和保存把握好这些主要内容和流程,基本上对分类模
- cs231n assignment2(2)
没天赋的学琴
assignment2的第二部分的内容,实现一个卷积神经网络。这一部分主要是实现卷积神经网络中的一些所需用到的layer类型:卷积层(convolution)和池化层(这里是实现max-pooling)。这部分的实现是不考虑其运行效率,而在真正的实现应用上,卷积神经网络的运行效率是一个很重要的问题。卷积层卷积层是由一个个过滤器(filter),每个过滤器的尺寸为:,这里的的大小与输入的图像或act
- cs231n作业:Assignment1-Softmax
Diane小山
softmax.pydefsoftmax_loss_naive(W,X,y,reg):"""Softmaxlossfunction,naiveimplementation(withloops)InputshavedimensionD,thereareCclasses,andweoperateonminibatchesofNexamples.Inputs:-W:Anumpyarrayofshape(
- java观察者模式
3213213333332132
java设计模式游戏观察者模式
观察者模式——顾名思义,就是一个对象观察另一个对象,当被观察的对象发生变化时,观察者也会跟着变化。
在日常中,我们配java环境变量时,设置一个JAVAHOME变量,这就是被观察者,使用了JAVAHOME变量的对象都是观察者,一旦JAVAHOME的路径改动,其他的也会跟着改动。
这样的例子很多,我想用小时候玩的老鹰捉小鸡游戏来简单的描绘观察者模式。
老鹰会变成观察者,母鸡和小鸡是
- TFS RESTful API 模拟上传测试
ronin47
TFS RESTful API 模拟上传测试。
细节参看这里:https://github.com/alibaba/nginx-tfs/blob/master/TFS_RESTful_API.markdown
模拟POST上传一个图片:
curl --data-binary @/opt/tfs.png http
- PHP常用设计模式单例, 工厂, 观察者, 责任链, 装饰, 策略,适配,桥接模式
dcj3sjt126com
设计模式PHP
// 多态, 在JAVA中是这样用的, 其实在PHP当中可以自然消除, 因为参数是动态的, 你传什么过来都可以, 不限制类型, 直接调用类的方法
abstract class Tiger {
public abstract function climb();
}
class XTiger extends Tiger {
public function climb()
- hibernate
171815164
Hibernate
main,save
Configuration conf =new Configuration().configure();
SessionFactory sf=conf.buildSessionFactory();
Session sess=sf.openSession();
Transaction tx=sess.beginTransaction();
News a=new
- Ant实例分析
g21121
ant
下面是一个Ant构建文件的实例,通过这个实例我们可以很清楚的理顺构建一个项目的顺序及依赖关系,从而编写出更加合理的构建文件。
下面是build.xml的代码:
<?xml version="1
- [简单]工作记录_接口返回405原因
53873039oycg
工作
最近调接口时候一直报错,错误信息是:
responseCode:405
responseMsg:Method Not Allowed
接口请求方式Post.
- 关于java.lang.ClassNotFoundException 和 java.lang.NoClassDefFoundError 的区别
程序员是怎么炼成的
真正完成类的加载工作是通过调用 defineClass来实现的;
而启动类的加载过程是通过调用 loadClass来实现的;
就是类加载器分为加载和定义
protected Class<?> findClass(String name) throws ClassNotFoundExcept
- JDBC学习笔记-JDBC详细的操作流程
aijuans
jdbc
所有的JDBC应用程序都具有下面的基本流程: 1、加载数据库驱动并建立到数据库的连接。 2、执行SQL语句。 3、处理结果。 4、从数据库断开连接释放资源。
下面我们就来仔细看一看每一个步骤:
其实按照上面所说每个阶段都可得单独拿出来写成一个独立的类方法文件。共别的应用来调用。
1、加载数据库驱动并建立到数据库的连接:
Html代码
St
- rome创建rss
antonyup_2006
tomcatcmsxmlstrutsOpera
引用
1.RSS标准
RSS标准比较混乱,主要有以下3个系列
RSS 0.9x / 2.0 : RSS技术诞生于1999年的网景公司(Netscape),其发布了一个0.9版本的规范。2001年,RSS技术标准的发展工作被Userland Software公司的戴夫 温那(Dave Winer)所接手。陆续发布了0.9x的系列版本。当W3C小组发布RSS 1.0后,Dave W
- html表格和表单基础
百合不是茶
html表格表单meta锚点
第一次用html来写东西,感觉压力山大,每次看见别人发的都是比较牛逼的 再看看自己什么都还不会,
html是一种标记语言,其实很简单都是固定的格式
_----------------------------------------表格和表单
表格是html的重要组成部分,表格用在body里面的
主要用法如下;
<table>
&
- ibatis如何传入完整的sql语句
bijian1013
javasqlibatis
ibatis如何传入完整的sql语句?进一步说,String str ="select * from test_table",我想把str传入ibatis中执行,是传递整条sql语句。
解决办法:
<
- 精通Oracle10编程SQL(14)开发动态SQL
bijian1013
oracle数据库plsql
/*
*开发动态SQL
*/
--使用EXECUTE IMMEDIATE处理DDL操作
CREATE OR REPLACE PROCEDURE drop_table(table_name varchar2)
is
sql_statement varchar2(100);
begin
sql_statement:='DROP TABLE '||table_name;
- 【Linux命令】Linux工作中常用命令
bit1129
linux命令
不断的总结工作中常用的Linux命令
1.查看端口被哪个进程占用
通过这个命令可以得到占用8085端口的进程号,然后通过ps -ef|grep 进程号得到进程的详细信息
netstat -anp | grep 8085
察看进程ID对应的进程占用的端口号
netstat -anp | grep 进程ID
&
- 优秀网站和文档收集
白糖_
网站
集成 Flex, Spring, Hibernate 构建应用程序
性能测试工具-JMeter
Hmtl5-IOCN网站
Oracle精简版教程网站
鸟哥的linux私房菜
Jetty中文文档
50个jquery必备代码片段
swfobject.js检测flash版本号工具
- angular.extend
boyitech
AngularJSangular.extendAngularJS API
angular.extend 复制src对象中的属性去dst对象中. 支持多个src对象. 如果你不想改变一个对象,你可以把dst设为空对象{}: var object = angular.extend({}, object1, object2). 注意: angular.extend不支持递归复制. 使用方法: angular.extend(dst, src); 参数:
- java-谷歌面试题-设计方便提取中数的数据结构
bylijinnan
java
网上找了一下这道题的解答,但都是提供思路,没有提供具体实现。其中使用大小堆这个思路看似简单,但实现起来要考虑很多。
以下分别用排序数组和大小堆来实现。
使用大小堆:
import java.util.Arrays;
public class MedianInHeap {
/**
* 题目:设计方便提取中数的数据结构
* 设计一个数据结构,其中包含两个函数,1.插
- ajaxFileUpload 针对 ie jquery 1.7+不能使用问题修复版本
Chen.H
ajaxFileUploadie6ie7ie8ie9
jQuery.extend({
handleError: function( s, xhr, status, e ) {
// If a local callback was specified, fire it
if ( s.error ) {
s.error.call( s.context || s, xhr, status, e );
}
- [机器人制造原则]机器人的电池和存储器必须可以替换
comsci
制造
机器人的身体随时随地可能被外来力量所破坏,但是如果机器人的存储器和电池可以更换,那么这个机器人的思维和记忆力就可以保存下来,即使身体受到伤害,在把存储器取下来安装到一个新的身体上之后,原有的性格和能力都可以继续维持.....
另外,如果一
- Oracle Multitable INSERT 的用法
daizj
oracle
转载Oracle笔记-Multitable INSERT 的用法
http://blog.chinaunix.net/uid-8504518-id-3310531.html
一、Insert基础用法
语法:
Insert Into 表名 (字段1,字段2,字段3...)
Values (值1,
- 专访黑客历史学家George Dyson
datamachine
on
20世纪最具威力的两项发明——核弹和计算机出自同一时代、同一群年青人。可是,与大名鼎鼎的曼哈顿计划(第二次世界大战中美国原子弹研究计划)相 比,计算机的起源显得默默无闻。出身计算机世家的历史学家George Dyson在其新书《图灵大教堂》(Turing’s Cathedral)中讲述了阿兰·图灵、约翰·冯·诺依曼等一帮子天才小子创造计算机及预见计算机未来
- 小学6年级英语单词背诵第一课
dcj3sjt126com
englishword
always 总是
rice 水稻,米饭
before 在...之前
live 生活,居住
usual 通常的
early 早的
begin 开始
month 月份
year 年
last 最后的
east 东方的
high 高的
far 远的
window 窗户
world 世界
than 比...更
- 在线IT教育和在线IT高端教育
dcj3sjt126com
教育
codecademy
http://www.codecademy.com codeschool
https://www.codeschool.com teamtreehouse
http://teamtreehouse.com lynda
http://www.lynda.com/ Coursera
https://www.coursera.
- Struts2 xml校验框架所定义的校验文件
蕃薯耀
Struts2 xml校验Struts2 xml校验框架Struts2校验
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 15:54:59 星期六
http://fa
- mac下安装rar和unrar命令
hanqunfeng
mac
1.下载:http://www.rarlab.com/download.htm 选择
RAR 5.21 for Mac OS X 2.解压下载后的文件 tar -zxvf rarosx-5.2.1.tar 3.cd rar sudo install -c -o $USER unrar /bin #输入当前用户登录密码 sudo install -c -o $USER rar
- 三种将list转换为map的方法
jackyrong
list
在本文中,介绍三种将list转换为map的方法:
1) 传统方法
假设有某个类如下
class Movie {
private Integer rank;
private String description;
public Movie(Integer rank, String des
- 年轻程序员需要学习的5大经验
lampcy
工作PHP程序员
在过去的7年半时间里,我带过的软件实习生超过一打,也看到过数以百计的学生和毕业生的档案。我发现很多事情他们都需要学习。或许你会说,我说的不就是某种特定的技术、算法、数学,或者其他特定形式的知识吗?没错,这的确是需要学习的,但却并不是最重要的事情。他们需要学习的最重要的东西是“自我规范”。这些规范就是:尽可能地写出最简洁的代码;如果代码后期会因为改动而变得凌乱不堪就得重构;尽量删除没用的代码,并添加
- 评“女孩遭野蛮引产致终身不育 60万赔偿款1分未得”医腐深入骨髓
nannan408
先来看南方网的一则报道:
再正常不过的结婚、生子,对于29岁的郑畅来说,却是一个永远也无法实现的梦想。从2010年到2015年,从24岁到29岁,一张张新旧不一的诊断书记录了她病情的同时,也清晰地记下了她人生的悲哀。
粗暴手术让人发寒
2010年7月,在酒店做服务员的郑畅发现自己怀孕了,可男朋友却联系不上。在没有和家人商量的情况下,她决定堕胎。
12月5日,
- 使用jQuery为input输入框绑定回车键事件 VS 为a标签绑定click事件
Everyday都不同
jspinput回车键绑定clickenter
假设如题所示的事件为同一个,必须先把该js函数抽离出来,该函数定义了监听的处理:
function search() {
//监听函数略......
}
为input框绑定回车事件,当用户在文本框中输入搜索关键字时,按回车键,即可触发search():
//回车绑定
$(".search").keydown(fun
- EXT学习记录
tntxia
ext
1. 准备
(1) 官网:http://www.sencha.com/
里面有源代码和API文档下载。
EXT的域名已经从www.extjs.com改成了www.sencha.com ,但extjs这个域名会自动转到sencha上。
(2)帮助文档:
想要查看EXT的官方文档的话,可以去这里h
- mybatis3的mapper文件报Referenced file contains errors
xingguangsixian
mybatis
最近使用mybatis.3.1.0时无意中碰到一个问题:
The errors below were detected when validating the file "mybatis-3-mapper.dtd" via the file "account-mapper.xml". In most cases these errors can be d