- 获取PPT中的MSO格式图片报错
♢.*
pptpython
亲爱的小伙伴们,在求知的漫漫旅途中,若你对深度学习的奥秘、Java与Python的奇妙世界,亦或是读研论文的撰写攻略有所探寻,那不妨给我一个小小的关注吧。我会精心筹备,在未来的日子里不定期地为大家呈上这些领域的知识宝藏与实用经验分享。每一个点赞,都如同春日里的一缕阳光,给予我满满的动力与温暖,让我们在学习成长的道路上相伴而行,共同进步✨。期待你的关注与点赞哟!image.ext的报错ValueEr
- 知识图谱技术剖析
♢.*
人工智能知识图谱大数据
亲爱的小伙伴们,在求知的漫漫旅途中,若你对深度学习的奥秘、Java与Python的奇妙世界,亦或是读研论文的撰写攻略有所探寻,那不妨给我一个小小的关注吧。我会精心筹备,在未来的日子里不定期地为大家呈上这些领域的知识宝藏与实用经验分享。每一个点赞,都如同春日里的一缕阳光,给予我满满的动力与温暖,让我们在学习成长的道路上相伴而行,共同进步✨。期待你的关注与点赞哟!一、引言在当今数字化信息爆炸的时代,如
- python神经网络框架有哪些,python调用神经网络模型
小明技术分享
python神经网络深度学习
人工智能Python深度学习库有哪些由于Python的易用性和可扩展性,众多深度学习框架提供了Python接口,其中较为流行的深度学习库如下:第一:CaffeCaffe是一个以表达式、速度和模块化为核心的深度学习框架,具备清晰、可读性高和快速的特性,在视频、图像处理方面应用较多。Caffe中的网络结构与优化都以配置文件形式定义,容易上手,无须通过代码构建网络;网络训练速度快,能够训练大型数据集与S
- Python实现复原毫米波雷达呼吸波形的示例
go5463158465
python算法机器学习python开发语言
以下是一个使用Python实现复原毫米波雷达呼吸波形的示例,该示例将涉及模型算法在重建损失和KL(Kullback-Leibler)损失之间的平衡问题。我们将使用深度学习中的变分自编码器(VAE)作为模型来进行呼吸波形的复原,因为VAE可以很好地处理重建和潜在空间分布的问题。步骤概述数据准备:生成或加载毫米波雷达的呼吸波形数据。定义VAE模型:包括编码器和解码器。定义损失函数:结合重建损失和KL损
- 对话系统(Chatbots) 原理与代码实例讲解
AI天才研究院
AI大模型企业级应用开发实战大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1对话系统的发展历程对话系统,又称聊天机器人(Chatbots),是模拟人类对话的计算机程序。从早期的基于规则的系统到如今基于深度学习的智能体,对话系统经历了漫长的发展历程。第一阶段:基于规则的系统(1960s-1990s)早期的对话系统主要基于预先定义的规则和模板。例如,ELIZA(1966)是一个模拟心理治疗师的程序,通过模式匹配和关键词识别来生成回复。这些系统只能处理有限的对
- 如何使用深度学习中的 Transformer 算法进行视频目标检测
go5463158465
python算法深度学习python开发语言
以下将介绍如何使用深度学习中的Transformer算法进行视频目标检测,并给出一个复现相关论文思路及示例代码。这里以DETR(End-to-EndObjectDetectionwithTransformers)为基础进行说明,它是将Transformer引入目标检测领域的经典论文。步骤概述环境准备:安装必要的库,如PyTorch、torchvision等。数据准备:使用公开的视频目标检测数据集,
- 大模型问答机器人的智能化程度
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
大模型、问答机器人、智能化程度、自然语言处理、深度学习、Transformer模型、知识图谱、推理能力、对话系统1.背景介绍近年来,人工智能技术取得了飞速发展,特别是深度学习的兴起,为自然语言处理(NLP)领域带来了革命性的变革。其中,大模型问答机器人作为一种新型的智能交互系统,凭借其强大的语言理解和生成能力,在客服、教育、娱乐等领域展现出广阔的应用前景。问答机器人是指能够理解用户自然语言问题并给
- 大语言模型原理与工程实践:残差连接与层归一化
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着自然语言处理(NLP)的发展,深度学习在过去几年中取得了令人瞩目的成果。其中,循环神经网络(RNN)和卷积神经网络(CNN)在图像和文本分类、语义角色标注、机器翻译等领域表现出色。然而,这些网络在训练过程中经常遭遇梯度消失和梯度爆炸的问题。为了解决这些问题,我们引入了残差连接(ResidualConnections)和层归一化(BatchNormalization)来改善模型性能。
- Transformer架构的GPU并行和之前的NLP算法并行有什么不同?
AI大模型学习不迷路
transformer自然语言处理大模型深度学习NLPLLM大语言模型
1.什么是GPU并行计算?GPU并行计算是一种利用图形处理单元(GPU)进行大规模并行数据处理的技术。与传统的中央处理单元(CPU)相比,GPU拥有更多的核心,能够同时处理数千个线程,这使得GPU在处理高度并行的任务时表现出色。在深度学习中,GPU并行计算被广泛应用于训练神经网络,加速模型训练过程。在2017年之前,自然语言处理(NLP)领域的研究者们通常会从头开始训练模型,那时能够利用GPU进行
- 《向量数据库指南》——MoE应用:解锁深度学习新境界的钥匙
大禹智库
《实战AI智能体》《向量数据库指南》深度学习人工智能向量数据库大禹智库低代码MoE模型
在深度学习的广阔天地里,混合专家(MoE)模型如同一把锐利的钥匙,正逐步解锁着各种复杂应用场景的新境界。作为大禹智库的向量数据库高级研究员,同时也是《向量数据库指南》的作者,我深感MoE模型在推动AI技术向前发展中所扮演的重要角色。今天,我将带大家深入探讨MoE模型在自然语言处理、计算机视觉以及多模态学习等领域的应用,并巧妙引导大家通过《向量数据库指南》获取更多干货和深度实战经验。一、自然语言处理
- LLM based Single Agent System
AGI大模型与大数据研究院
大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LLM-BasedSingleAgentSystem:ANewEraofIntelligentAutomation关键词:大语言模型,单智能体系统,强化学习,自然语言处理,智能自动化1.背景介绍近年来,随着深度学习技术的快速发展,大语言模型(LLM)在自然语言处理(NLP)领域取得了突破性进展。LLM凭借其强大的语言理解和生成能力,正在改变着人们与信息交互的方式。同时,人工智能领域的另一个重要研究
- AI常见的算法
纠结哥_Shrek
人工智能算法
人工智能(AI)中常见的算法分为多个领域,如机器学习、深度学习、强化学习、自然语言处理和计算机视觉等。以下是一些常见的算法及其用途:1.机器学习(MachineLearning)监督学习(SupervisedLearning)线性回归(LinearRegression):用于预测连续值,如房价预测。逻辑回归(LogisticRegression):用于分类问题,如垃圾邮件检测。支持向量机(SVM)
- 【 书生·浦语大模型实战营】学习笔记(五):LMDeploy 量化部署
GoAI
深入浅出LLM深入浅出AI大模型LLM部署人工智能LMDeploy
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI1;;爱好者学习,性价比非常高!加入星球➡️点击链接
- PyTorch 框架实现线性回归:从数据预处理到模型训练全流程
大模型铲屎官
PyTorchpytorch线性回归人工智能深度学习python
系列文章目录Pytorch基础篇01-PyTorch新手必看:张量是什么?5分钟教你快速创建张量!02-张量运算真简单!PyTorch数值计算操作完全指南03-Numpy还是PyTorch?张量与Numpy的神奇转换技巧04-揭秘数据处理神器:PyTorch张量拼接与拆分实用技巧05-深度学习从索引开始:PyTorch张量索引与切片最全解析06-张量形状任意改!PyTorchreshape、tra
- 机器学习Day01
酒脑猫
机器学习人工智能
人工智能三大概念及其关系人工智能(AI):使用计算机来模拟或者代替人类机器学习(ML):机器自动学习,并不只由人定义规则编程深度学习(DL):大脑仿生,模拟人大脑神经网络,设计一层层神经元模拟事物机器学习是实现人工智能的一种途径,深度学习是机器学习的一种更加深入的方法。机器学习学习方法基于规则的学习:程序员根据自己经验定义规则基于模型的学习:由于某些事物,问题无法可以定义明确的规则,如:图片,语音
- AI技术赋能电商行业,引领变革
m0_74136676
人工智能
AI大模型在电商行业的应用正在不断拓展,其强大的数据处理和分析能力为电商平台带来了前所未有的创新机遇。一、购物推荐的创新应用AI大模型通过分析用户的浏览历史、购买记录、搜索关键词等大量数据,能够生成个性化的商品推荐。这种推荐系统比传统的基于规则或简单协同过滤的推荐更为精准。它利用深度学习技术,更准确地预测用户的兴趣点,使推荐内容更加贴切,从而提高用户点击率和购买转化率。例如,当用户在电商平台上搜索
- DeepSeek V3 模型微调(SFT)技术详解
zhangjiaofa
大模型DeepSeek模型微调
DeepSeekV3模型微调(SFT)技术详解目录引言背景知识2.1深度学习与预训练模型2.2微调(Fine-tuning)的概念2.3监督微调(SupervisedFine-tuning,SFT)DeepSeekV3模型概述3.1模型架构3.2预训练任务3.3模型性能监督微调(SFT)技术详解4.1数据准备4.1.1数据收集与清洗4.1.2数据标注4.1.3数据增强4.2模型初始化4.2.1预训
- Tensor 基本操作2 理解 tensor.max 操作,沿着给定的 dim 是什么意思 | PyTorch 深度学习实战
Chatopera 研发团队
机器学习深度学习pytorch人工智能
前一篇文章,Tensor基本操作1|PyTorch深度学习实战本系列文章GitHubRepo:https://github.com/hailiang-wang/pytorch-get-started目录Tensor基本操作torch.max默认指定维度Tensor基本操作torch.maxtorch.max实现降维运算,基于指定的dim选取子元素的最大值。默认a=torch.randn(1,3)p
- 【图像超分】论文复现:万字长文!Pytorch实现EDSR!代码修改无报错!踩坑全记录!适合各种深度学习新手!帮助你少走弯路!附修改后的代码和PSNR最优的模型权重文件!
十小大
超分辨率重建(理论+实战科研+应用)深度学习pytorch人工智能超分辨率重建图像处理计算机视觉图像超分
第一次来请先看这篇文章:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)修改后代码和权重文件下载见文末链接!!!包含制作好的h5数据集和最优性能权重文件,可直接用于测试。本文亮点:讲解细致,EDSR流程全通,代码注释丰富,适合新手入门阅读深度思考,踩坑报错全
- 【人工智能】Python常用库-PyTorch常用方法教程
IT古董
人工智能机器学习Python人工智能pythonpytorch机器学习
PyTorch是一个强大的开源深度学习框架,以其灵活性和动态计算图而广受欢迎。以下是PyTorch的详细教程,涵盖从基础到实际应用的使用方法。1.安装与导入1.1安装PyTorch访问PyTorch官方网站,根据系统、Python版本和CUDA支持选择安装命令。常用安装命令:pipinstalltorchtorchvisiontorchaudio1.2导入库importtorchimporttor
- 【人工智能】Python常用库-TensorFlow常用方法教程
IT古董
人工智能机器学习Python人工智能pythontensorflow机器学习
TensorFlow是一个广泛应用的开源深度学习框架,支持多种机器学习任务,如深度学习、神经网络、强化学习等。以下是TensorFlow的详细教程,涵盖基础使用方法和示例代码。1.安装与导入安装TensorFlow:pipinstalltensorflow导入TensorFlow:importtensorflowastfimportnumpyasnp验证安装:print(tf.__version_
- [论文总结] 深度学习在农业领域应用论文笔记14
落痕的寒假
论文总结深度学习论文阅读人工智能
当下,深度学习在农业领域的研究热度持续攀升,相关论文发表量呈现出迅猛增长的态势。但繁荣背后,质量却不尽人意。相当一部分论文内容空洞无物,缺乏能够落地转化的实际价值,“凑数”的痕迹十分明显。在农业信息化领域的顶刊《ComputersandElectronicsinAgriculture》中也大面积存在。众多论文在研究方法上存在严重缺陷,过于简单粗放。只是机械地把深度学习方法生硬地套用到特定农业问题中
- 详解三种常用标准化:Batch Norm、Layer Norm和RMSNorm
yyytucj
batch开发语言
在深度学习中,标准化技术是提升模型训练速度、稳定性和性能的重要手段。本文将详细介绍三种常用的标准化方法:BatchNormalization(批量标准化)、LayerNormalization(层标准化)和RMSNormalization(RMS标准化),并对其原理、实现和应用场景进行深入分析。一、BatchNormalization1.1BatchNormalization的原理BatchNor
- 利用 PyTorch 动态计算图和自动求导机制实现自适应神经网络
drebander
AI编程pytorch神经网络人工智能
在深度学习任务中,不同任务的复杂度千差万别。为了解决复杂任务对模型容量的需求,同时避免简单任务因过度拟合导致的性能下降,我们可以构建一个能够根据任务自动调整网络结构的神经网络。在PyTorch中,动态计算图和自动求导机制为实现这一目标提供了强大的工具。动态网络结构设计PyTorch的动态计算图允许我们根据运行时的输入数据或任务复杂度,动态创建和修改网络结构。动态添加/移除层:可以在训练过程中根据需
- 可解释性:走向透明与可信的人工智能
一位小说男主
人工智能入门深度学习机器学习人工智能神经网络
随着深度学习和机器学习技术的迅速发展,越来越多的行业和领域开始应用这些技术。然而,这些技术的“黑盒”特性也带来了不容忽视的挑战。在许多任务中,尽管这些模型表现出色,取得了相当高的精度,但其决策过程不透明,这对于依赖于机器决策的应用(如金融、医疗、法律等)来说,可能是无法接受的。因此,如何提高模型的可解释性、实现透明和可信的人工智能,成为了当下人工智能领域的重要课题。❤️本文将深入探讨机器学习中的可
- 单目测距(yolo-目标检测+标定+深度学习目标检测_测距)
计算机C9硕士_算法工程师
YOLO目标检测深度学习
YOLOv5模型介绍YOLOv5是目前最先进的目标检测算法之一,在多个数据集上取得了优秀的表现。相较于YOLOv4,YOLOv5采用了更深的Backbone网络和更高的分辨率输入图像,以提高检测精度和速度。单目测距实现方法在目标检测的基础上,我们可以通过计算物体在图像中的像素大小来估计其距离。具体方法是,首先确定某个物体的实际尺寸,然后根据该物体在图像中的像素大小计算其距离。这个方法可以应用于各种
- Depth Anything V2:单目深度估计的更强基线
武朵欢Nerissa
DepthAnythingV2:单目深度估计的更强基线项目地址:https://gitcode.com/gh_mirrors/de/Depth-Anything-V2项目介绍DepthAnythingV2是由HKU与TikTok团队合作开发的单目深度估计算法的升级版本。这个框架显著提升了细节处理能力和鲁棒性,相比于基于深度学习的方法,它提供了更快的推理速度、更少的参数量以及更高的深度预测精度。本项
- OpenAI的编程语言和框架,给程序员带来了帮助有哪些
API技术大佬Anzexi58
OpenAI人工智能人工智能深度学习
OpenAI是一个人工智能开发公司,成立于2015年,总部位于美国旧金山。这家公司致力于研究和开发先进的人工智能技术,旨在将这些技术应用到解决全球一些最棘手的问题上。OpenAI以其卓越的技术和实验室出品的groundbreakingAIpapers而闻名。OpenAI的研究涉及深度学习、自然语言处理、视觉感知、强化学习等多个领域,并已在各种应用中取得了令人瞩目的成果。例如,在机器人领域,Open
- DeepSeek:突破传统的AI算法与下载排行分析
smart_ljh
行业搜索人工智能AI
DeepSeek的AI算法突破DeepSeek相较于OpenAI以及其它平台的性能对比DeepSeek的下载排行分析(截止2025/1/28AI人工智能相关DeepSeek甚至一度被推上了搜索)未来发展趋势总结在人工智能技术飞速发展的当下,搜索引擎市场也迎来了新的变革。DeepSeek,作为一款基于深度学习技术和大数据算法的搜索引擎,以其独特的优势在国内外市场上引起了广泛关注。下面介绍一下针对De
- DeepSeek--通向通用人工智能的深度探索者
油泼辣子多加
专业名词解释人工智能
一、词源与全称“DeepSeek"由"Deep”(深度)与"Seek"(探索)组合而成,中文译名为"深度求索"。其全称为"深度求索人工智能基础技术研究有限公司",英文对应"DeepSeekArtificialIntelligenceResearchInstitute"。这一命名体现了企业对深度学习技术与未知领域持续探索的双重追求。二、发展历程初创期(2023)公司成立于中国杭州,创始团队汇聚了来自
- Dom
周华华
JavaScripthtml
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 【Spark九十六】RDD API之combineByKey
bit1129
spark
1. combineByKey函数的运行机制
RDD提供了很多针对元素类型为(K,V)的API,这些API封装在PairRDDFunctions类中,通过Scala隐式转换使用。这些API实现上是借助于combineByKey实现的。combineByKey函数本身也是RDD开放给Spark开发人员使用的API之一
首先看一下combineByKey的方法说明:
- msyql设置密码报错:ERROR 1372 (HY000): 解决方法详解
daizj
mysql设置密码
MySql给用户设置权限同时指定访问密码时,会提示如下错误:
ERROR 1372 (HY000): Password hash should be a 41-digit hexadecimal number;
问题原因:你输入的密码是明文。不允许这么输入。
解决办法:用select password('你想输入的密码');查询出你的密码对应的字符串,
然后
- 路漫漫其修远兮 吾将上下而求索
周凡杨
学习 思索
王国维在他的《人间词话》中曾经概括了为学的三种境界古今之成大事业、大学问者,罔不经过三种之境界。“昨夜西风凋碧树。独上高楼,望尽天涯路。”此第一境界也。“衣带渐宽终不悔,为伊消得人憔悴。”此第二境界也。“众里寻他千百度,蓦然回首,那人却在灯火阑珊处。”此第三境界也。学习技术,这也是你必须经历的三种境界。第一层境界是说,学习的路是漫漫的,你必须做好充分的思想准备,如果半途而废还不如不要开始。这里,注
- Hadoop(二)对话单的操作
朱辉辉33
hadoop
Debug:
1、
A = LOAD '/user/hue/task.txt' USING PigStorage(' ')
AS (col1,col2,col3);
DUMP A;
//输出结果前几行示例:
(>ggsnPDPRecord(21),,)
(-->recordType(0),,)
(-->networkInitiation(1),,)
- web报表工具FineReport常用函数的用法总结(日期和时间函数)
老A不折腾
finereport报表工具web开发
web报表工具FineReport常用函数的用法总结(日期和时间函数)
说明:凡函数中以日期作为参数因子的,其中日期的形式都必须是yy/mm/dd。而且必须用英文环境下双引号(" ")引用。
DATE
DATE(year,month,day):返回一个表示某一特定日期的系列数。
Year:代表年,可为一到四位数。
Month:代表月份。
- c++ 宏定义中的##操作符
墙头上一根草
C++
#与##在宏定义中的--宏展开 #include <stdio.h> #define f(a,b) a##b #define g(a) #a #define h(a) g(a) int main() { &nbs
- 分析Spring源代码之,DI的实现
aijuans
springDI现源代码
(转)
分析Spring源代码之,DI的实现
2012/1/3 by tony
接着上次的讲,以下这个sample
[java]
view plain
copy
print
- for循环的进化
alxw4616
JavaScript
// for循环的进化
// 菜鸟
for (var i = 0; i < Things.length ; i++) {
// Things[i]
}
// 老鸟
for (var i = 0, len = Things.length; i < len; i++) {
// Things[i]
}
// 大师
for (var i = Things.le
- 网络编程Socket和ServerSocket简单的使用
百合不是茶
网络编程基础IP地址端口
网络编程;TCP/IP协议
网络:实现计算机之间的信息共享,数据资源的交换
协议:数据交换需要遵守的一种协议,按照约定的数据格式等写出去
端口:用于计算机之间的通信
每运行一个程序,系统会分配一个编号给该程序,作为和外界交换数据的唯一标识
0~65535
查看被使用的
- JDK1.5 生产消费者
bijian1013
javathread生产消费者java多线程
ArrayBlockingQueue:
一个由数组支持的有界阻塞队列。此队列按 FIFO(先进先出)原则对元素进行排序。队列的头部 是在队列中存在时间最长的元素。队列的尾部 是在队列中存在时间最短的元素。新元素插入到队列的尾部,队列检索操作则是从队列头部开始获得元素。
ArrayBlockingQueue的常用方法:
- JAVA版身份证获取性别、出生日期及年龄
bijian1013
java性别出生日期年龄
工作中需要根据身份证获取性别、出生日期及年龄,且要还要支持15位长度的身份证号码,网上搜索了一下,经过测试好像多少存在点问题,干脆自已写一个。
CertificateNo.java
package com.bijian.study;
import java.util.Calendar;
import
- 【Java范型六】范型与枚举
bit1129
java
首先,枚举类型的定义不能带有类型参数,所以,不能把枚举类型定义为范型枚举类,例如下面的枚举类定义是有编译错的
public enum EnumGenerics<T> { //编译错,提示枚举不能带有范型参数
OK, ERROR;
public <T> T get(T type) {
return null;
- 【Nginx五】Nginx常用日志格式含义
bit1129
nginx
1. log_format
1.1 log_format指令用于指定日志的格式,格式:
log_format name(格式名称) type(格式样式)
1.2 如下是一个常用的Nginx日志格式:
log_format main '[$time_local]|$request_time|$status|$body_bytes
- Lua 语言 15 分钟快速入门
ronin47
lua 基础
-
-
单行注释
-
-
[[
[多行注释]
-
-
]]
-
-
-
-
-
-
-
-
-
-
-
1.
变量 & 控制流
-
-
-
-
-
-
-
-
-
-
num
=
23
-
-
数字都是双精度
str
=
'aspythonstring'
- java-35.求一个矩阵中最大的二维矩阵 ( 元素和最大 )
bylijinnan
java
the idea is from:
http://blog.csdn.net/zhanxinhang/article/details/6731134
public class MaxSubMatrix {
/**see http://blog.csdn.net/zhanxinhang/article/details/6731134
* Q35
求一个矩阵中最大的二维
- mongoDB文档型数据库特点
开窍的石头
mongoDB文档型数据库特点
MongoDD: 文档型数据库存储的是Bson文档-->json的二进制
特点:内部是执行引擎是js解释器,把文档转成Bson结构,在查询时转换成js对象。
mongoDB传统型数据库对比
传统类型数据库:结构化数据,定好了表结构后每一个内容符合表结构的。也就是说每一行每一列的数据都是一样的
文档型数据库:不用定好数据结构,
- [毕业季节]欢迎广大毕业生加入JAVA程序员的行列
comsci
java
一年一度的毕业季来临了。。。。。。。。
正在投简历的学弟学妹们。。。如果觉得学校推荐的单位和公司不适合自己的兴趣和专业,可以考虑来我们软件行业,做一名职业程序员。。。
软件行业的开发工具中,对初学者最友好的就是JAVA语言了,网络上不仅仅有大量的
- PHP操作Excel – PHPExcel 基本用法详解
cuiyadll
PHPExcel
导出excel属性设置//Include classrequire_once('Classes/PHPExcel.php');require_once('Classes/PHPExcel/Writer/Excel2007.php');$objPHPExcel = new PHPExcel();//Set properties 设置文件属性$objPHPExcel->getProperties
- IBM Webshpere MQ Client User Issue (MCAUSER)
darrenzhu
IBMjmsuserMQMCAUSER
IBM MQ JMS Client去连接远端MQ Server的时候,需要提供User和Password吗?
答案是根据情况而定,取决于所定义的Channel里面的属性Message channel agent user identifier (MCAUSER)的设置。
http://stackoverflow.com/questions/20209429/how-mca-user-i
- 网线的接法
dcj3sjt126com
一、PC连HUB (直连线)A端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 二、PC连PC (交叉线)A端:(568A): 白绿,绿,白橙,蓝,白蓝,橙,白棕,棕; B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 三、HUB连HUB&nb
- Vimium插件让键盘党像操作Vim一样操作Chrome
dcj3sjt126com
chromevim
什么是键盘党?
键盘党是指尽可能将所有电脑操作用键盘来完成,而不去动鼠标的人。鼠标应该说是新手们的最爱,很直观,指哪点哪,很听话!不过常常使用电脑的人,如果一直使用鼠标的话,手会发酸,因为操作鼠标的时候,手臂不是在一个自然的状态,臂肌会处于绷紧状态。而使用键盘则双手是放松状态,只有手指在动。而且尽量少的从鼠标移动到键盘来回操作,也省不少事。
在chrome里安装 vimium 插件
- MongoDB查询(2)——数组查询[六]
eksliang
mongodbMongoDB查询数组
MongoDB查询数组
转载请出自出处:http://eksliang.iteye.com/blog/2177292 一、概述
MongoDB查询数组与查询标量值是一样的,例如,有一个水果列表,如下所示:
> db.food.find()
{ "_id" : "001", "fruits" : [ "苹
- cordova读写文件(1)
gundumw100
JavaScriptCordova
使用cordova可以很方便的在手机sdcard中读写文件。
首先需要安装cordova插件:file
命令为:
cordova plugin add org.apache.cordova.file
然后就可以读写文件了,这里我先是写入一个文件,具体的JS代码为:
var datas=null;//datas need write
var directory=&
- HTML5 FormData 进行文件jquery ajax 上传 到又拍云
ileson
jqueryAjaxhtml5FormData
html5 新东西:FormData 可以提交二进制数据。
页面test.html
<!DOCTYPE>
<html>
<head>
<title> formdata file jquery ajax upload</title>
</head>
<body>
<
- swift appearanceWhenContainedIn:(version1.2 xcode6.4)
啸笑天
version
swift1.2中没有oc中对应的方法:
+ (instancetype)appearanceWhenContainedIn:(Class <UIAppearanceContainer>)ContainerClass, ... NS_REQUIRES_NIL_TERMINATION;
解决方法:
在swift项目中新建oc类如下:
#import &
- java实现SMTP邮件服务器
macroli
java编程
电子邮件传递可以由多种协议来实现。目前,在Internet 网上最流行的三种电子邮件协议是SMTP、POP3 和 IMAP,下面分别简单介绍。
◆ SMTP 协议
简单邮件传输协议(Simple Mail Transfer Protocol,SMTP)是一个运行在TCP/IP之上的协议,用它发送和接收电子邮件。SMTP 服务器在默认端口25上监听。SMTP客户使用一组简单的、基于文本的
- mongodb group by having where 查询sql
qiaolevip
每天进步一点点学习永无止境mongo纵观千象
SELECT cust_id,
SUM(price) as total
FROM orders
WHERE status = 'A'
GROUP BY cust_id
HAVING total > 250
db.orders.aggregate( [
{ $match: { status: 'A' } },
{
$group: {
- Struts2 Pojo(六)
Luob.
POJOstrust2
注意:附件中有完整案例
1.采用POJO对象的方法进行赋值和传值
2.web配置
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee&q
- struts2步骤
wuai
struts
1、添加jar包
2、在web.xml中配置过滤器
<filter>
<filter-name>struts2</filter-name>
<filter-class>org.apache.st