Opencv 双目标定之后,校正图像出现错误,求大神指导

左右图像标定结果如下

Opencv 双目标定之后,校正图像出现错误,求大神指导_第1张图片

Opencv 双目标定之后,校正图像出现错误,求大神指导_第2张图片

Opencv 双目标定之后,校正图像出现错误,求大神指导_第3张图片

Opencv 双目标定之后,校正图像出现错误,求大神指导_第4张图片

Opencv 双目标定之后,校正图像出现错误,求大神指导_第5张图片

角点顺序左右图都没错。

可是标定之后,校正的图像如下错误

Opencv 双目标定之后,校正图像出现错误,求大神指导_第6张图片

 

Opencv 双目标定之后,校正图像出现错误,求大神指导_第7张图片

 

Opencv 双目标定之后,校正图像出现错误,求大神指导_第8张图片

Opencv 双目标定之后,校正图像出现错误,求大神指导_第9张图片

Opencv 双目标定之后,校正图像出现错误,求大神指导_第10张图片

 

标定代码如下

void main()

{

Size boardSize;
    boardSize.width = 11;
    boardSize.height = 8;

vector imagelist;
    bool ok = readStringList("D:/Code/vision/Binocular_Demo/Binocular_Calibration/Image/stereo_calib.xml", imagelist);

StereoCalib(imagelist, boardSize, true, true, true);

}

bool Binocular_Calibration::StereoCalib(const vector& imagelist, Size boardSize, bool displayCorners = false, bool useCalibrated = true, bool showRectified = true)
{
    if (imagelist.size() % 2 != 0)
    {
        cout << "Error: the image list contains odd (non-even) number of elements\n";
        return false;
    }

    const int maxScale = 2;
    const float squareSize = 1.f;  // Set this to your actual square size
                                   // ARRAY AND VECTOR STORAGE:

    vector > imagePoints[2];
    vector > objectPoints;
    Size imageSize;

    int i, j, k, nimages = (int)imagelist.size() / 2;

    imagePoints[0].resize(nimages);
    imagePoints[1].resize(nimages);
    vector goodImageList;

    for (i = j = 0; i < nimages; i++)
    {
        for (k = 0; k < 2; k++)
        {
            const string& filename = imagelist[i * 2 + k];
            Mat img = imread(filename, 0);
            if (img.empty())
                break;
            if (imageSize == Size())
                imageSize = img.size();
            else if (img.size() != imageSize)
            {
                cout << "The image " << filename << " has the size different from the first image size. Skipping the pair\n";
                break;
            }
            bool found = false;
            vector& corners = imagePoints[k][j];
            for (int scale = 1; scale <= maxScale; scale++)
            {
                Mat timg;
                if (scale == 1)
                    timg = img;
                else
                    cv::resize(img, timg, Size(), scale, scale);
                found = findChessboardCorners(timg, boardSize, corners,
                    CALIB_CB_ADAPTIVE_THRESH | CALIB_CB_NORMALIZE_IMAGE);
                if (found)
                {
                    if (scale > 1)
                    {
                        Mat cornersMat(corners);
                        cornersMat *= 1. / scale;
                    }
                    break;
                }
            }
            if (displayCorners)
            {
                cout << filename << endl;
                Mat cimg, cimg1;
                cvtColor(img, cimg, COLOR_GRAY2BGR);
                drawChessboardCorners(cimg, boardSize, corners, found);
                double sf = 640. / MAX(img.rows, img.cols);
                cv::resize(cimg, cimg1, Size(), sf, sf);
                imshow(filename, cimg1);
                char c = (char)waitKey(500);
                if (c == 27 || c == 'q' || c == 'Q') //Allow ESC to quit
                    exit(-1);
            }
            else
                putchar('.');
            if (!found)
                break;
            cornerSubPix(img, corners, Size(11, 11), Size(-1, -1),
                TermCriteria(TermCriteria::COUNT + TermCriteria::EPS,
                    30, 0.01));
        }
        if (k == 2)
        {
            goodImageList.push_back(imagelist[i * 2]);
            goodImageList.push_back(imagelist[i * 2 + 1]);
            j++;
        }
    }
    cout << j << " pairs have been successfully detected.\n";
    nimages = j;
    if (nimages < 2)
    {
        cout << "Error: too little pairs to run the calibration\n";
        return false;
    }

    imagePoints[0].resize(nimages);
    imagePoints[1].resize(nimages);
    objectPoints.resize(nimages);

    for (i = 0; i < nimages; i++)
    {
        for (j = 0; j < boardSize.height; j++)
            for (k = 0; k < boardSize.width; k++)
                objectPoints[i].push_back(Point3f(k*squareSize, j*squareSize, 0));
    }

    cout << "Running stereo calibration ...\n";

    Mat cameraMatrix[2], distCoeffs[2];
    cameraMatrix[0] = initCameraMatrix2D(objectPoints, imagePoints[0], imageSize, 0);
    cameraMatrix[1] = initCameraMatrix2D(objectPoints, imagePoints[1], imageSize, 0);
    Mat R, T, E, F;

    double rms = stereoCalibrate(objectPoints, imagePoints[0], imagePoints[1],
        cameraMatrix[0], distCoeffs[0],
        cameraMatrix[1], distCoeffs[1],
        imageSize, R, T, E, F,
        CALIB_FIX_ASPECT_RATIO +
        CALIB_ZERO_TANGENT_DIST +
        CALIB_USE_INTRINSIC_GUESS +
        CALIB_SAME_FOCAL_LENGTH +
        CALIB_RATIONAL_MODEL +
        CALIB_FIX_K3 + CALIB_FIX_K4 + CALIB_FIX_K5,
        TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, 1e-5));
    cout << "done with RMS error=" << rms << endl;

    // CALIBRATION QUALITY CHECK
    // because the output fundamental matrix implicitly
    // includes all the output information,
    // we can check the quality of calibration using the
    // epipolar geometry constraint: m2^t*F*m1=0
    double err = 0;
    int npoints = 0;
    vector lines[2];
    for (i = 0; i < nimages; i++)
    {
        int npt = (int)imagePoints[0][i].size();
        Mat imgpt[2];
        for (k = 0; k < 2; k++)
        {
            imgpt[k] = Mat(imagePoints[k][i]);
            undistortPoints(imgpt[k], imgpt[k], cameraMatrix[k], distCoeffs[k], Mat(), cameraMatrix[k]);
            computeCorrespondEpilines(imgpt[k], k + 1, F, lines[k]);
        }
        for (j = 0; j < npt; j++)
        {
            double errij = fabs(imagePoints[0][i][j].x*lines[1][j][0] +
                imagePoints[0][i][j].y*lines[1][j][1] + lines[1][j][2]) +
                fabs(imagePoints[1][i][j].x*lines[0][j][0] +
                    imagePoints[1][i][j].y*lines[0][j][1] + lines[0][j][2]);
            err += errij;
        }
        npoints += npt;
    }
    cout << "average epipolar err = " << err / npoints << endl;

    // save intrinsic parameters
    FileStorage fs(m_IntParamPath.toStdString(), FileStorage::WRITE);
    if (fs.isOpened())
    {
        fs << "M1" << cameraMatrix[0] << "D1" << distCoeffs[0] <<
            "M2" << cameraMatrix[1] << "D2" << distCoeffs[1];
        fs.release();
    }
    else
        cout << "Error: can not save the intrinsic parameters\n";

    Mat R1, R2, P1, P2, Q;
    Rect validRoi[2];

    stereoRectify(cameraMatrix[0], distCoeffs[0],
        cameraMatrix[1], distCoeffs[1],
        imageSize, R, T, R1, R2, P1, P2, Q,
        CALIB_ZERO_DISPARITY, 1, imageSize, &validRoi[0], &validRoi[1]);

    fs.open(m_ExtParamPath.toStdString(), FileStorage::WRITE);
    if (fs.isOpened())
    {
        fs << "R" << R << "T" << T << "R1" << R1 << "R2" << R2 << "P1" << P1 << "P2" << P2 << "Q" << Q;
        fs.release();
    }
    else
        cout << "Error: can not save the extrinsic parameters\n";

    // OpenCV can handle left-right
    // or up-down camera arrangements
    bool isVerticalStereo = fabs(P2.at(1, 3)) > fabs(P2.at(0, 3));


    Mat rmap[2][2];
    // IF BY CALIBRATED (BOUGUET'S METHOD)
    if (useCalibrated)
    {
        // we already computed everything
    }
    // OR ELSE HARTLEY'S METHOD
    else
        // use intrinsic parameters of each camera, but
        // compute the rectification transformation directly
        // from the fundamental matrix
    {
        vector allimgpt[2];
        for (k = 0; k < 2; k++)
        {
            for (i = 0; i < nimages; i++)
                std::copy(imagePoints[k][i].begin(), imagePoints[k][i].end(), back_inserter(allimgpt[k]));
        }
        F = findFundamentalMat(Mat(allimgpt[0]), Mat(allimgpt[1]), FM_8POINT, 0, 0);
        Mat H1, H2;
        stereoRectifyUncalibrated(Mat(allimgpt[0]), Mat(allimgpt[1]), F, imageSize, H1, H2, 3);

        R1 = cameraMatrix[0].inv()*H1*cameraMatrix[0];
        R2 = cameraMatrix[1].inv()*H2*cameraMatrix[1];
        P1 = cameraMatrix[0];
        P2 = cameraMatrix[1];
    }
    fs.open(m_ExtParamPath.toStdString(), FileStorage::WRITE);
    if (fs.isOpened())
    {
        fs << "R" << R << "T" << T << "R1" << R1 << "R2" << R2 << "P1" << P1 << "P2" << P2 << "Q" << Q;
        fs.release();
    }
    else
        cout << "Error: can not save the extrinsic parameters\n";
    //Precompute maps for cv::remap()
    initUndistortRectifyMap(cameraMatrix[0], distCoeffs[0], R1, P1, imageSize, CV_16SC2, rmap[0][0], rmap[0][1]);
    initUndistortRectifyMap(cameraMatrix[1], distCoeffs[1], R2, P2, imageSize, CV_16SC2, rmap[1][0], rmap[1][1]);

    Mat canvas;
    double sf;
    int w, h;
    if (!isVerticalStereo)
    {
        sf = 600. / MAX(imageSize.width, imageSize.height);
        w = cvRound(imageSize.width*sf);
        h = cvRound(imageSize.height*sf);
        canvas.create(h, w * 2, CV_8UC3);
    }
    else
    {
        sf = 300. / MAX(imageSize.width, imageSize.height);
        w = cvRound(imageSize.width*sf);
        h = cvRound(imageSize.height*sf);
        canvas.create(h * 2, w, CV_8UC3);
    }

    for (i = 0; i < nimages; i++)
    {
        for (k = 0; k < 2; k++)
        {
            Mat img = imread(goodImageList[i * 2 + k], 0), rimg, cimg;
            remap(img, rimg, rmap[k][0], rmap[k][1], INTER_LINEAR);
            cvtColor(rimg, cimg, COLOR_GRAY2BGR);
            Mat canvasPart = !isVerticalStereo ? canvas(Rect(w*k, 0, w, h)) : canvas(Rect(0, h*k, w, h));
            cv::resize(cimg, canvasPart, canvasPart.size(), 0, 0, INTER_AREA);
            if (useCalibrated)
            {
                Rect vroi(cvRound(validRoi[k].x*sf), cvRound(validRoi[k].y*sf),
                    cvRound(validRoi[k].width*sf), cvRound(validRoi[k].height*sf));
                rectangle(canvasPart, vroi, Scalar(0, 0, 255), 3, 8);
            }
        }

        if (!isVerticalStereo)
            for (j = 0; j < canvas.rows; j += 16)
                line(canvas, Point(0, j), Point(canvas.cols, j), Scalar(0, 255, 0), 1, 8);
        else
            for (j = 0; j < canvas.cols; j += 16)
                line(canvas, Point(j, 0), Point(j, canvas.rows), Scalar(0, 255, 0), 1, 8);
        imshow("rectified", canvas);
        char c = (char)waitKey();
        if (c == 27 || c == 'q' || c == 'Q')
            break;
    }
    return true;
}

 

图片文件xml如下




"D:/Code/vision/Binocular_Demo/Binocular_Calibration/Image/left_1.bmp"
"D:/Code/vision/Binocular_Demo/Binocular_Calibration/Image/right_1.bmp"
"D:/Code/vision/Binocular_Demo/Binocular_Calibration/Image/left_2.bmp"
"D:/Code/vision/Binocular_Demo/Binocular_Calibration/Image/right_2.bmp"
"D:/Code/vision/Binocular_Demo/Binocular_Calibration/Image/left_3.bmp"
"D:/Code/vision/Binocular_Demo/Binocular_Calibration/Image/right_3.bmp"
"D:/Code/vision/Binocular_Demo/Binocular_Calibration/Image/left_4.bmp"
"D:/Code/vision/Binocular_Demo/Binocular_Calibration/Image/right_4.bmp"
"D:/Code/vision/Binocular_Demo/Binocular_Calibration/Image/left_5.bmp"
"D:/Code/vision/Binocular_Demo/Binocular_Calibration/Image/right_5.bmp"


 

你可能感兴趣的:(Opencv 双目标定之后,校正图像出现错误,求大神指导)