随着接触的地图种类越来越多,每种产品对地图服务的坐标系的要求不同,今天遇到了整理的好文,整理记录分享。
WGS-84坐标系(World Geodetic System一1984 Coordinate System)
一种国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向BIH (国际时间服务机构)1984.O定义的协议地球极(CTP)方向,X轴指向BIH 1984.0的零子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系统。
Web墨卡托是2005年谷歌在谷歌地图中首次使用的,当时或更早的Web墨卡托使用者还是称其为世界墨卡托 World Mercator - Spherical Mercator (unofficial deprecated ESRI),代号 WKID 54004 (在 EPSG:54004 或 ESRI:54004 中,非官方)。
在2006年,OSGeo在提出的 Tile Map Service (TMS) 标准中使用代号 OSGEO:41001,WGS84 / Simple Mercator - Spherical Mercator (unofficial deprecated OSGEO / Tile Map Service)。
2007年8月6日 Christopher Schmidt (OpenLayers的重要贡献者之一)在通过一次GIS讨论中为了在OpenLayers中使用谷歌投影,提出给谷歌投影(Web墨卡托)使用一个统一的代号(已有如54004、41001之类的代号)900913(也形似 Google),并与同年9月11日在OpenLayers的OpenLayers/Layer/SphericalMercator.js中正式使用代号 900913。
在2008年5月EPSG在6.15版本中正式(可能是谷歌地图取得了巨大成功)给谷歌地图投影赋予 CRS 代号 EPSG:3785(Popular Visualisation CRS / Mercator),这也是Web墨卡托正式被EPSG组织承认(由于Web墨卡托不是标准的地图投影,之前一直没有被EPSG没有收录)。
很快EPSG于2009年2月9号使用新代号EPSG:3857
代替之前的 EPSG:3785,给谷歌地图投影方法命名为“公共可视化伪墨卡托投影”(PVPM),投影运算方法代号 1024。
至今,EPSG:3857
(WGS 84 / Pseudo-Mercator) 代号是web墨卡托的正式代号。
在GIS界,离不开 ESRI,Web墨卡托的代号在 ESRI 中也有几个。最早在 ESRI 的软件中给Web墨卡托投影的称号为 102113(WGS 1984 Web Mercator),与 EPSG:3785 对应;后来使用 102100
(WGS 1984 Web Mercator Auxiliary Sphere),与 EPSG:3857
对应。
在 ArcGIS 10.0 版本中,ESRI 正式使用 EPSG:3857 替换之前的 EPSG:102100。
总之,Web墨卡托现在的正式官方代号 EPSG:3857
,同时 900913、3587、54004、41001、102113、102100 和 3785 等也是指Web墨卡托,虽然他们的具体定义会有一些差别,但他们在数学上是相等的。
Web墨卡托取得了巨大成功,如今主流的Web地图几乎都是使用的Web墨卡托,如国外的 Google Maps,OpenStreetMap,Bing Map,ArcGIS 和 Heremaps 等,国内的百度地图、高德地图、腾讯地图和天地图等也是基于Web墨卡托(由于国内政策的原因,国内地图会有加密要求,一般有两种情况,一种是在 Web墨卡托的基础上经过国家标准加密的国标02坐标系
,熟称“火星坐标系
”;另一种是在国标的02坐标系下进一步进行加密,如百度地图的BD09坐标系)。
GCJ-02是由中国国家测绘局(G表示Guojia国家,C表示Cehui测绘,J表示Ju局)制订的地理信息系统的坐标系统。
它其实就是对真实坐标系统进行人为的加偏处理,按照特殊的算法,将真实的坐标加密成虚假的坐标,而这个加偏并不是线性的加偏,所以各地的偏移情况都会有所不同。而加密后的坐标也常被大家称为“火星坐标系统”。
该坐标系的坐标值为经纬度格式
,单位为度。
这里的GCJ02经纬度投影,也就是在WGS84经纬度的基础之上,进行GCJ-02加偏。
GCJ-02是由中国国家测绘局(G表示Guojia国家,C表示Cehui测绘,J表示Ju局)制订的地理信息系统的坐标系统。
它其实就是对真实坐标系统进行人为的加偏处理,按照特殊的算法,将真实的坐标加密成虚假的坐标,而这个加偏并不是线性的加偏,所以各地的偏移情况都会有所不同。而加密后的坐标也常被大家称为“火星坐标系统”。
该坐标系的坐标值为Web墨卡托格式
,单位为米。
这里的GCJ02 Web 墨卡托,也就是在标准Web默卡托的基础之上,进行GCJ-02加偏。
BD09经纬度投影属于百度坐标系,它是在标准经纬度的基础上进行GCJ-02加偏之后,再加上百度自身的加偏算法,也就是在标准经纬度的基础之上进行了两次加偏。
该坐标系的坐标值为经纬度格式
,单位为度。
BD09 Web 墨卡托属于百度坐标系,它是在标准Web墨卡托的基础上进行GCJ-02加偏之后,再加上百度自身的加偏算法,也就是在Web墨卡托的基础之上进行了两次加偏。
该坐标系的坐标值为Web墨卡托格式
,单位为米。
中国成立以后,我国大地测量进入了全面发展时期,在全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的"一边倒"政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。T.A的原点不在北京而是在前苏联的普尔科沃。
自北京54坐标系统建立以来,在该坐标系内进行了许多地区的局部平差,其成果得到了广泛的应用。但是随着测绘新理论·新技术的不断发展,人们发现该坐标系存在很多缺点,为此,我国在1978年在西安召开了"全国天文大地网整体平差会议",提出了建立属于我国自己的大地坐标系,即后来的1980西安坐标系。
1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG 75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里。
2000中国大地坐标系(China Geodetic Coordinate System 2000,CGCS2000),又称之为2000国家大地坐标系,是中国新一代大地坐标系,21世纪初已在中国正式实施。
20世纪50年代,为满足测绘工作的迫切需要,中国采用了1954年北京坐标系。1954年之后,随着天文大地网布设任务的完成,通过天文大地网整体平差,于20世纪80年代初中国又建立了1980西安坐标系。1954北京坐标系和1980西安坐标系在中国的经济建设和国防建设中发挥了巨大作用。
随着情况的变化和时间的推移,上述两个以经典测量技术为基础的局部大地坐标系,已经不能适应科学技术特别是空间技术发展,不能适应中国经济建设和国防建设需要。中国大地坐标系的更新换代,是经济建设、国防建设、社会发展和科技发展的客观需要。
以地球质量中心为原点的地心大地坐标系,是21世纪空间时代全球通用的基本大地坐标系。以空间技术为基础的地心大地坐标系,是中国新一代大地坐标系的适宜选择。地心大地坐标系可以满足大地测量、地球物理、天文、导航和航天应用以及经济、社会发展的广泛需求。历经多年,中国测绘、地震部门和科学院有关单位为建立中国新一代大地坐标系作了大量基础性工作,20世纪末先后建成全国 GPS一、二级网,国家GPS A、B级网,中国地壳运动观测网络和许多地壳形变网,为地心大地坐标系的实现奠定了较好的基础。中国大地坐标系更新换代的条件也已具备。
参考:https://blog.csdn.net/mrib/article/details/77944532