- Lineageos 22.1 aosp15 定制学习专栏介绍
JabamiLight
Lineageos学习aosp15android15pixel3
一.前言学习了一段时间的rom开发,需求也大概做了一些,但是一直没有记录下来总结,这个专栏开始会基于如下平台开始尝试做一些常见模块的需求定制,记录学习,如果有错误欢迎指正,大家一起学习!至于pixel编译刷机大家可自行查看官方文档。https://wiki.lineageos.org/devices/blueline/二.平台介绍设备:GooglePixel3Lineageos:22.1基于aos
- 新数据结构(10)——Java抽象类和接口
Ut Relinquam
java数据结构算法
抽象类抽象类产生原因子类可以重写父类中的方法并覆盖父类中的变量抽象类会将子类里共有的代码逻辑进行提取和抽象化抽象类通常被设计作为父类来实现代码复用抽象类的特点抽象类只需要做方法的定义,不需要实现一个被abstract修饰的类被称为抽象类,一个由abstract修饰的方法则被称为抽象方法。由abstract修饰的抽象方法,通常不在抽象类本身中实现,而是作为必须由子类覆盖和实现的方法的定义存在。只有抽
- ocr智能票据识别系统|自动化票据识别集成方案
OCR_API
接口ocr自动化运维
在企业日常运营中,对大量票据实现数字化管理是一项耗时且容易出错的任务。随着技术的进步,OCR(光学字符识别)智能票据识别系统的出现为企业提供了一个高效、准确的解决方案,不仅简化了财务流程,还大幅提升了工作效率。一、什么是OCR智能票据识别系统?OCR智能票据识别系统是一种基于先进图像处理和深度学习算法的技术,能够自动从各类票据中提取关键信息,并将其转换为结构化数据。翔云发票识别系统可以应用于增值税
- 软件测试技术之跨平台的移动端UI自动化测试(上)
学掌门
软件测试ITui软件测试
摘要:本文提出一种跨平台的UI自动化测试方案,一方面使用像素级的截图对比技术,解决传统UI自动化测试难以验证页面样式的问题;另一方面用统一部署在服务器端的JavaScript测试代码代替Android和iOS测试代码,大大提高编写测试代码的效率。该方案经过实际验证,具有效率高、质量好、便于维护等多方面优点,文中将阐述具体设计思路以及各关键步骤的实现方法,为同类测试提供借鉴。一、背景当前金融服务数字
- 深入理解 Java 模板模式:代码复用与架构优化的利器
疯狂的键盘侠
设计模式javajava设计模式
深入理解Java模板模式:代码复用与架构优化的利器在Java编程世界中,设计模式如同智慧的结晶,帮助开发者应对各种复杂的软件开发需求。其中,模板模式(TemplatePattern)以其独特的代码复用和流程标准化能力,成为构建灵活且可维护系统的关键工具。今天,让我们一同深入探究Java中的模板模式。一、模板模式:概念初窥模板模式属于行为型设计模式,它定义了一个操作中的算法骨架,将一些步骤延迟到子类
- Go分布式爬虫笔记(五)_golang分布式爬虫架构
2401_87198107
golang分布式爬虫
系统级别优化与架构设计:如何对服务进行拆分如何将服务链接在一起服务调用的关系以及调用频率各种问题:如何让服务随着负载的增加具有可扩展性?是否采用DDD的架构设计?如何进行分布式的协调?选择何种中间件、缓存数据库与存储数据库?使用何种通信方式?如何设计缓存与数据库的关系,才能避免缓存失效之后大量数据直接打到数据库导致的服务响应变慢甚至服务雪崩的问题呢?分布式系统中数据的一致性,如果业务能够接受读取到
- 实用教程:用微服务搭建你的2025项目
zxzy_org
微服务架构云原生算法
微服务架构为构建现代化项目提供了灵活且高效的解决方案。在2025年,如果你计划采用微服务搭建项目,可以参考以下步骤:首先,明确项目的核心需求,合理划分服务边界。一个好的微服务设计需要确保服务粒度适中,不会因为服务过细而增加不必要的复杂性。接着,选择合适的技术栈,主流的语言如Java、Python和GoLang依然是微服务开发的首选。其次,容器化部署是必不可少的步骤,Docker和Kubernete
- 从零开始学习代理AI:2025全面指南
zxzy_org
学习人工智能ai
代理AI作为人工智能的一项重要技术,近年来得到了广泛关注。2025年,代理AI技术的不断进步让许多开发者和企业都迫切希望掌握这项技术。如果你是从零开始学习代理AI,本文将为你提供一份全面的学习指南,帮助你掌握代理AI的基础知识、关键技术和实战经验。首先,你需要理解代理AI的基本概念。代理AI是一种能够自主行动并根据环境反馈调整行为的智能系统。它能够通过学习和推理来完成复杂任务,如自动化客服、智能推
- 人工智能到底是什么?
yzx991013
开发语言人工智能pythondjango
人工智能(ArtificialIntelligence,简称AI)是一门研究和开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的学科。以下是关于人工智能的具体介绍:定义-从技术角度:人工智能是让计算机系统具备像人类一样的感知、学习、推理、决策等能力,通过算法和数据使计算机能处理和理解各种复杂信息,如语音识别系统能听懂人类语言并转化为文字。-从学科交叉角度:人工智能融合了计算机科学、控制
- 在linux 中搭建deepseek 做微调,硬件配置要求说明
慧香一格
学习AIlinux服务器deepseek
搭建可参考使用deepseek-CSDN博客官方网站:DeepSeekDeepSeek是一个基于深度学习的开源项目,旨在通过深度学习技术来提升搜索引擎的准确性和效率。如果你想在Linux系统上搭建DeepSeek,你可以遵循以下步骤。这里我将提供一个基本的指导,帮助你从零开始搭建一个基础的DeepSeek环境。1.安装依赖首先,确保你的Linux系统上安装了Python和pip。DeepSeek主
- 深度学习与图像识别:机器学习基础之回归
Shenrn_
机器学习回归深度学习
1.线性回归1.1一元线性回归1.2多元线性回归2.逻辑回归与线性回归的不同在于其将最终预测值y固定在一个范围之中2.1Sigmoid函数sigmoid函数表达式:p为预测出来的概率,范围在0-1之间,一般用于处理二分类问题,因为这个式子的一个显著特征在于:当z=0,p=0.5当z>0,p>0.5当z<0,p<0.5所以当对z进行多元线性回归表示的时候,以p的值来反映y_pre是一个不错的选择,此
- 系统架构的五个层次_多视角解读一个典型的企业IT系统部署架构
没吃药的小沙弥
系统架构的五个层次
在企业实践中,开发或引进一个IT系统时,架构设计工作是后续系统开发、部署的前提,因此无论是作为企业甲方项目经理还是乙方实施经理,都需要对系统的架构进行合理设计并评估架构的合理性。没有合理的架构设计,可以说就是没有理清系统的逻辑层次,没有考虑清楚系统的核心要素,会为系统后续的开发、部署和运行带来极大隐患和不确定性。在很多企业中,缺少架构设计或者架构未经专家评审,后续的所有流程都无法推进,连最基础的开
- 深度学习下的图像分割
人工智能大讲堂
深度学习人工智能
在之前写的文章[图像分割演进之路]中,讲述了图像分割的发展历程,从传统图像分割算法到人工智能,分割算法百花齐放,但最终的佼佼者当属人工智能,但即使是人工智能领域,图像分割也五花八门,今天就让我们看几种基于学习的图像分割方法。基于学习的图像分割算法主要依赖于深度神经网络,经典的深度神经网络分为如下几种:2.1卷积神经网络CNN:卷积神经网络是图像处理领域应用最为广泛的网络,其权值共享,局部连接等特性
- m1处理器macbook使用qemu模拟运行RT-Thread
想学rtos的带土
m1macrt-threadiot物联网macosrisc-v
最近准备深入学习一下RTOS,好巧不巧的是在前几天换了m1的macbookair,于是想要在电脑上配置一下RT-Thread的开发环境,网上搜了一大堆,没有看到符合需求的相关教程(真的很少很少,哭了,给我整崩溃!)。不过在几天的东平西凑后,成功在我的电脑上完成了RT-Thread的编译与运行。现在分享出来,有需要的可以参考一下。1.工具python3.11.5.我这里应该是用的苹果自带的,这里不用
- 深入剖析模型推理:原理、技术与挑战
♢.*
人工智能模型推理
亲爱的小伙伴们,在求知的漫漫旅途中,若你对深度学习的奥秘、Java与Python的奇妙世界,亦或是读研论文的撰写攻略有所探寻,那不妨给我一个小小的关注吧。我会精心筹备,在未来的日子里不定期地为大家呈上这些领域的知识宝藏与实用经验分享。每一个点赞,都如同春日里的一缕阳光,给予我满满的动力与温暖,让我们在学习成长的道路上相伴而行,共同进步✨。期待你的关注与点赞哟!引言在当今人工智能飞速发展的时代,模型
- SpringCloud面试题----eureka和zookeeper都可以提供服务注册与发现的功能,请说说两个的区别
指尖下的技术
Java面试题springcloudeurekazookeeper
dEureka和Zookeeper都可以提供服务注册与发现的功能,它们的区别主要体现在以下几个方面:设计理念Eureka:是基于RESTful风格设计的,强调简单、轻量级,旨在为微服务架构提供一种易于使用的服务发现解决方案,注重服务的可用性和灵活性。Zookeeper:最初是为分布式协调而设计的,提供了一种通用的分布式数据管理和协调服务,其功能更侧重于分布式系统中的数据一致性、节点选举、配置管理等
- M1 Mac双系统搭建qemu riscv linux仿真
灰灰h
操作系统经验分享linuxrisc-vmacos
前言实验需要riscv仿真,网上没有针对m1的配置教程,故在此整理下。本人用的m1macbookpro,系统12.3。参考到的链接:https://github.com/AsahiLinuxhttps://risc-v-getting-started-guide.readthedocs.io/en/latest/linux-qemu.htmlhttps://zhuanlan.zhihu.com/p
- ios 小程序 虚拟商品支付怎么解
rock——you
前端ios小程序cocoa
在iOS小程序中涉及虚拟商品支付的问题需要特别注意,因为苹果AppStore的审核规则(AppStoreReviewGuidelines)对虚拟商品的支付有严格的规定,任何涉及虚拟商品的支付必须使用苹果的IAP(In-AppPurchase)支付。以下是解决iOS小程序虚拟商品支付的思路和常见的合规方案:苹果的政策背景根据AppStore审核指南的规定:虚拟商品的支付:涉及虚拟商品或服务(如会员订
- BabyAGI:开创智能自动化新时代,赋能人工智能的下一次飞跃
gs80140
基础知识科谱AI人工智能自动化运维
目录BabyAGI:开创智能自动化新时代,赋能人工智能的下一次飞跃什么是BabyAGI?BabyAGI的核心功能BabyAGI的应用领域BabyAGI与传统AI系统的区别BabyAGI的挑战与未来发展BabyAGI的未来展望结语BabyAGI:开创智能自动化新时代,赋能人工智能的下一次飞跃随着人工智能(AI)的不断演进,机器学习和自我优化系统已经逐步渗透到各个行业,从医疗健康到金融服务,从零售到制
- QEMU-Manager:Mac上的QEMU图形化管理利器
苏承根
QEMU-Manager:Mac上的QEMU图形化管理利器项目地址:https://gitcode.com/gh_mirrors/qe/QEMU-Manager在探索虚拟化的浩瀚世界时,找到一个既强大又易用的工具至关重要。今天,我们要向您隆重推荐QEMU-Manager——一款专为macOS设计的QEMU图形前端,由Swift语言精心打造。通过这篇文章,我们将深入挖掘QEMU-Manager的魅力
- 2025广州国际汽车内外饰技术展览会:引领汽车内外饰发展新潮流-Automotive Interiors
JSZNZZ
汽车制造科技
随着科技的不断进步和消费者对汽车品质的要求日益提高,汽车内外饰的设计和制造也在不断创新和发展。AUTOTECHChina2025广州国际汽车内外饰技术展览会作为行业内的重要盛会,将于2025年11月20日至22日在广州保利世贸博览馆盛大举办。本次展览会将汇集全球500多家领先参展商,展示最新的汽车内外饰设计、材料、制造和生产设备、信息娱乐系统等方面的产品和服务,为汽车行业的发展提供一个重要的交流与
- 机器学习和线性回归、softmax回归
小名叫咸菜
人工智能线性回归
监督学习监督学习(supervisedlearning)擅⻓在“给定输⼊特征”的情况下预测标签。每个“特征-标签”对都称为一个样本(example)。我们的目标是生成一个模型,能够将任何输⼊特征映射到标签(即预测)。回归——平方误差损失函数回归(regression)是最简单的监督学习任务之一。分类——交叉熵样本属于“哪一类”的问题称为分类问题回归是训练一个回归函数来输出一个数值;分类是训练一个分
- 2024山东省职业院校技能大赛“网络空间安全”赛题及赛题解析(超详细)_2024年山东省职业院校技能大赛中职组网络安全赛项竞赛样题(2)
2401_84252820
程序员安全web安全
如何自学黑客&网络安全黑客零基础入门学习路线&规划初级黑客1、网络安全理论知识(2天)①了解行业相关背景,前景,确定发展方向。②学习网络安全相关法律法规。③网络安全运营的概念。④等保简介、等保规定、流程和规范。(非常重要)2、渗透测试基础(一周)①渗透测试的流程、分类、标准②信息收集技术:主动/被动信息搜集、Nmap工具、GoogleHacking③漏洞扫描、漏洞利用、原理,利用方法、工具(MSF
- AI 编程工具崛起,程序员的未来是否岌岌可危?
一、AI编程工具的现状AI编程工具的出现与迅猛发展是技术进步的必然结果。这一趋势首先得益于开源社区和代码托管平台提供的丰富代码样本,它们为AI模型的学习提供了充足的素材。其次,编程语言本身的严格语法和结构化特点,使得AI能够高效、精确地理解和生成代码。再者,深度学习技术的突破,尤其是大语言模型在代码理解与生成方面的显著进展,为AI编程提供了坚实的技术基础。最后,随着软件开发需求的不断增加,传统开发
- 武圣破难上山之他要学习——《贪心》
曼珠沙华
算法学习算法
一、贪心算法原理与实例剖析贪心算法作为一种独具特色且应用广泛的策略,占据着重要地位。其核心策略在于将复杂的整体问题,拆解为一系列紧密相连的步骤。每一个步骤都选取当前状态下的最优方案,通过这样的方式步步推进,直至完成所有步骤。从本质而言,贪心算法在处理问题时,着重于当下的抉择,全力聚焦于当下时刻的最优选择,而暂且搁置对最终结果的预先考量。然而,运用贪心算法时需格外留意一个关键前提:每一步所做出的选择
- 写好C/C++代码,大学生必读:林锐博士的《高质量 C++/C 编程指南》
晚风る
C\C++c++c语言
作为一名大学生,我深知在学习编程的过程中,写出高质量的代码是多么重要。最近,我读了林锐博士的《高质量C++/C编程指南》,这本书让我受益匪浅,今天想和大家分享一下我的学习心得。目录一、初识《高质量C++/C编程指南》二、书中的精华内容(一)编程规范与代码风格(二)内存管理(三)函数设计(四)类的构造函数、析构函数与赋值函数三、我的学习与实践四、收获与感悟五、推荐与分享一、初识《高质量C++/C编程
- 通用评估系统(五)- 前端部分总体说明
一个水货程序员
项目实战前端fastapipythonvue
通用评估系统(五)-前端部分总体说明相关链接Gitee地址通用评估系统(一)-介绍通用评估系统(二)-原型设计通用评估系统(三)-前端部分通用评估系统(四)-前端部分计算脚本编辑组件文档说明本节中说明前端总体显示相关信息。具体数据交互待后端开发时同步进行。目录结构实际显示效果全局搜索评估模型管理数据模型管理指标体系管理评估任务管理部分代码说明评估模型管理组件import{ref,h,compute
- 评测系统的神经架构搜索优化
AI天才研究院
ChatGPT计算DeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
评测系统的神经架构搜索优化关键词评测系统神经架构搜索优化强化学习人工智能摘要本文将探讨评测系统的神经架构搜索优化这一主题。首先,我们将介绍评测系统的基本概念和重要性,然后深入解析神经架构搜索优化的基本原理和算法。接下来,我们将探讨神经架构搜索优化的应用场景和实战案例分析,最后进行总结和展望。第1章:引言1.1评测系统的重要性评测系统在各个领域都有着广泛的应用,如教育、工业、金融等。它的主要作用是对
- 工厂设计模式
小李大魔王
设计模式java设计模式javapython
工厂设计模式简介工厂模式是一种创建型设计模式,用于创建产品,代替手动new,主要包括简单工厂模式、工厂方法模式、抽象工厂模式。一、简单工厂模式定义:通过一个工厂类根据传入的参数匹配创建的产品结构组成:工厂(Factory):负责创建具体产品抽象产品(Product):定义产品的标准具体产品(ConcretProduct):抽象产品的具体产品案例抽象产品//水果publicinterfaceFrui
- 【数据可视化】数据可视化看板需求梳理模板(含示例)
L-ololois
数据可视化
一、模板设计一个数据可视化看板需要从多个方面梳理需求,以确保看板能够有效地传达信息并满足用户的需求。以下是一些关键方面:1.目标和受众●明确目标:确定看板的主要目的,例如监控业务指标、分析市场趋势、展示项目进度等。●了解受众:明确看板的受众是谁,例如管理层、业务团队、技术人员等,了解他们的需求和数据理解能力。2.数据需求●数据来源:确定数据的来源,包括数据库、API、文件等,并确保数据的可靠性和可
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号