DeepLab V2安装配置

2016年Semantic Segmentation方向比较出色的一篇文章,DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
https://arxiv.org/abs/1606.00915

DeepLab V2安装配置_第1张图片

作者提供了开源的代码,shell版本:https://bitbucket.org/aquariusjay/deeplab-public-ver2
和python版本:https://github.com/TheLegendAli/DeepLab-Context2
以及相关Model下载:
http://liangchiehchen.com/projects/DeepLab_Models.html

作者所使用的Caffe版本比较陈旧,导致会出现很多和最新环境不兼容的情况。我使用的环境是Ubuntu 16.04, CUDA 8.0, cuDNN 5.1, Python 2.7.12,以下就以这个配置写个简单流程说明。

1.安装

1.1 安装Matio

下载matio(https://sourceforge.net/projects/matio/files/matio/1.5.2/)

$ tar zxf matio-1.5.2.tar.gz
$ cd matio-1.5.2
$ ./configure
$ make
$ make check
$ make install
$ sudo ldconfig

1.2 安装wget

执行脚本时如果提示 ImportError: No module named wget,说明还需要安装wget

sudo pip install wget

2.编译

和BVLC版本一样,对DeepLab版本的caffe进行编译

make -j8
make test -j8
make pycaffe
make pytest

2.1 CUDA8.0环境下atomicAdd错误

编译时会出现如下错误提示:

./include/caffe/common.cuh(9): error: function "atomicAdd(double *, double)" has already been defined

原因是CUDA 8.0 提供了对atomicAdd函数的定义,但atomicAdd在之前的CUDA toolkit中并未出现,因此一些程序自定义了atomicAdd函数。

解决方法:打开./include/caffe/common.cuh文件,在atomicAdd前添加宏判断即可。

如下:

#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 600 
#else
   static __inline__ __device__ double atomicAdd(double* address, double val) 
   { 
      ...
   } 
#endif

再次编译程序即可。

2.2 cuDNN v5环境会出现类似下面的接口错误

./include/caffe/util/cudnn.hpp: In function ‘void caffe::cudnn::createPoolingDesc(cudnnPoolingStruct**, caffe::PoolingParameter_PoolMethod, cudnnPoolingMode_t*, int, int, int, int, int, int)’:
./include/caffe/util/cudnn.hpp:127:41: error: too few arguments to function ‘cudnnStatus_t cudnnSetPooling2dDescriptor(cudnnPoolingDescriptor_t, cudnnPoolingMode_t, cudnnNanPropagation_t, int, int, int, int, int, int)’
         pad_h, pad_w, stride_h, stride_w));

这是由于所使用的cuDNN版本不一致的导致的,作者配置环境是cuDNN 4.0,但是5.0版本后的cuDNN接口有所变化。

解决方法 :将以下几个文件用最新BVLC版本的caffe对应文件替换并重新编译

./include/caffe/util/cudnn.hpp
./include/caffe/layers/cudnn_conv_layer.hpp
./include/caffe/layers/cudnn_relu_layer.hpp
./include/caffe/layers/cudnn_sigmoid_layer.hpp
./include/caffe/layers/cudnn_tanh_layer.hpp

./src/caffe/layers/cudnn_conv_layer.cpp
./src/caffe/layers/cudnn_conv_layer.cu
./src/caffe/layers/cudnn_relu_layer.cpp
./src/caffe/layers/cudnn_relu_layer.cu
./src/caffe/layers/cudnn_sigmoid_layer.cpp
./src/caffe/layers/cudnn_sigmoid_layer.cu
./src/caffe/layers/cudnn_tanh_layer.cpp
./src/caffe/layers/cudnn_tanh_layer.cu

2.3 如果使用cmake编译时可能会遇到以下错误

../lib/libcaffe.so.1.0.0-rc3: undefined reference to `Mat_VarFree'
../lib/libcaffe.so.1.0.0-rc3: undefined reference to `Mat_VarReadDataLinear'
../lib/libcaffe.so.1.0.0-rc3: undefined reference to `Mat_Open'
../lib/libcaffe.so.1.0.0-rc3: undefined reference to `Mat_VarCreate'
../lib/libcaffe.so.1.0.0-rc3: undefined reference to `Mat_CreateVer'
../lib/libcaffe.so.1.0.0-rc3: undefined reference to `Mat_VarWrite'
../lib/libcaffe.so.1.0.0-rc3: undefined reference to `Mat_VarReadInfo'
../lib/libcaffe.so.1.0.0-rc3: undefined reference to `Mat_Close'

解决方法
下载FindMATIO.cmake.zip文件,解压缩后拷贝到./cmake/Modules目录中。
文件下载路径:https://github.com/TheLegendAli/DeepLab-Context/files/453735/FindMATIO.cmake.zip
并添加以下代码至./cmake/Dependencies.cmake文件中

find_package(MATIO REQUIRED)
include_directories(${MATIO_INCLUDE_DIR})
list(APPEND Caffe_LINKER_LIBS ${MATIO_LIBRARIES})

3.运行脚本

python run.py

3.1 v1和v2版本兼容性问题

Error parsing text-format caffe.NetParameter: 316:9: Message type "caffe.ConvolutionParameter" has no field named "hole".

v1版本中将Atrous Convolution的参数称为”hole”,而v2为了和BVLC版本一致而改称为”dilation”。因此将train.prototxt中的hole全部替换为dilation即可。

3.2 继续改错

为了增加对v1版本prototxt的兼容性,还需要对源代码进行多项改动,需要增加对ImageSegDataLayer, InterpLayer, SegAccuracyLayer, MatWriteLayer这几层对prototxt文件信息的支持。首先在./src/caffe/proto/caffe.proto文件中添加唯一ID

message V1LayerParameter {
  enum LayerType {
    IMAGE_SEG_DATA = 40;
    INTERP = 41;
    SEG_ACCURACY = 42;
    MAT_READ = 44;
    MAT_WRITE = 43;
  }
  optional InterpParameter interp_param = 43;
  optional SegAccuracyParameter seg_accuracy_param = 44;
  optional MatReadParameter mat_read_param = 51;
  optional MatWriteParameter mat_write_param = 45;
}

./src/caffe/util/upgrade_proto.cpp文件的UpgradeV1LayerType(const V1LayerParameter_LayerType type)函数中添加

const char* UpgradeV1LayerType(const V1LayerParameter_LayerType type) {
  switch (type) {

case V1LayerParameter_LayerType_IMAGE_SEG_DATA:
    return "ImageSegData";
case V1LayerParameter_LayerType_INTERP:
    return "Interp";
case V1LayerParameter_LayerType_SEG_ACCURACY:
    return "SegAccuracy";
case V1LayerParameter_LayerType_MAT_WRITE:
    return "MatWrite";

}

还需要补充对InterpLayer参数interp_param的支持,

bool UpgradeV1LayerParameter(const V1LayerParameter& v1_layer_param,
                             LayerParameter* layer_param) {

if (v1_layer_param.has_interp_param()) {
      layer_param->mutable_interp_param()->CopyFrom(
          v1_layer_param.interp_param());
    }

}

你可能感兴趣的:(Machine,Learning)