caffe中的卷积的计算细节和1x1卷积作用


在卷积神经网络中,卷积算是一个必不可少的操作,

下图是一个简单的各层的关系。

caffe中的卷积的计算细节和1x1卷积作用_第1张图片


可以看出一个很好的扩展的关系,下面是整个卷积的大概的过程

图中上半部分是传统的卷积的操作,下图是一个矩阵的相乘的操作。

caffe中的卷积的计算细节和1x1卷积作用_第2张图片

下图是在一个卷积层中将卷积操作展开的具体操作过程,他里面按照卷积核的大小取数据然后展开,在同一张图里的不同卷积核选取的逐行摆放,不同N的话,就在同一行后面继续拼接,不同个可以是多个通道,但是需要注意的是同一行里面每一段都应该对应的是原图中中一个位置的卷积窗口。

caffe中的卷积的计算细节和1x1卷积作用_第3张图片

从上图可以清晰的看到卷积的计算过程是 

将一个三通道的RGB的图像拆分成三张单通道的图像,然后针对每一个通道都有一个k个卷积核,进行卷积操作,从图中可以清晰看到每一个通道的对应的K个卷积和都是不同的,但是在计算完成之后,在将对应的卷积的结果进行叠加,即可,这样就得到整个卷积层的特征图像了。下一步就是其他的操作。


下图是在一个卷积层中将卷积操作展开的具体操作过程,他里面按照卷积核的大小取数据然后展开,在同一张图里的不同卷积核选取的逐行摆放,不同N的话,就在同一行后面继续拼接,不同个可以是多个通道,但是需要注意的是同一行里面每一段都应该对应的是原图中中一个位置的卷积窗口。

caffe中的卷积的计算细节和1x1卷积作用_第4张图片

对于卷积层中的卷积操作,还有一个group的概念要说明一下,groups是代表filter 组的个数。引入gruop主要是为了选择性的连接卷基层的输入端和输出端的channels,否则参数会太多。每一个group 和1/ groupinput 通道和 1/group 的output通道进行卷积操作。比如有4个input, 8个output,那么1-4属于第一组,5-8属于第二个gruop


reference:http://www.caffecn.cn/?/question/136

我来说说我的理解,我认为1×1的卷积大概有两个方面的作用吧:
1. 实现跨通道的交互和信息整合
2. 进行卷积核通道数的降维和升维
 
下面详细解释一下:
1. 1×1的卷积层(可能)引起人们的重视是在NIN的结构中,论文中林敏师兄的想法是利用MLP代替传统的线性卷积核,从而提高网络的表达能力。文中同时利用了跨通道pooling的角度解释,认为文中提出的MLP其实等价于在传统卷积核后面接cccp层,从而实现多个feature map的线性组合,实现跨通道的信息整合。

而cccp层是等价于1×1卷积的,因此细看NIN的caffe实现,就是在每个传统卷积层后面接了两个cccp层(其实就是接了两个1×1的卷积层)。

2. 进行降维和升维引起人们重视的(可能)是在GoogLeNet里。对于每一个Inception模块(如下图),原始模块是左图,右图中是加入了1×1卷积进行降维的。虽然左图的卷积核都比较小,但是当输入和输出的通道数很大时,乘起来也会使得卷积核参数变的很大,而右图加入1×1卷积后可以降低输入的通道数,卷积核参数、运算复杂度也就跟着降下来了。


以GoogLeNet的3a模块为例,输入的feature map是28×28×192/

3a模块中1×1卷积通道为64/

3×3卷积通道为128,5×5卷积通道为32/

如果是左图结构,那么卷积核参数为1×1×192×64+3×3×192×128+5×5×192×32

而右图对3×3和5×5卷积层前分别加入了通道数为96和16的1×1卷积层,这样卷积核参数就变成了1×1×192×64+(1×1×192×96+3×3×96×128)+(1×1×192×16+5×5×16×32),参数大约减少到原来的三分之一。同时在并行pooling层后面加入1×1卷积层后也可以降低输出的feature map数量,左图pooling后feature map是不变的,再加卷积层得到的feature map,会使输出的feature map扩大到416,如果每个模块都这样,网络的输出会越来越大。而右图在pooling后面加了通道为32的1×1卷积,使得输出的feature map数降到了256。GoogLeNet利用1×1的卷积降维后,得到了更为紧凑的网络结构,虽然总共有22层,但是参数数量却只是8层的AlexNet的十二分之一(当然也有很大一部分原因是去掉了全连接层)。

1.JPG

最近大热的MSRA的ResNet同样也利用了1×1卷积,并且是在3×3卷积层的前后都使用了,不仅进行了降维,还进行了升维,使得卷积层的输入和输出的通道数都减小,参数数量进一步减少,如下图的结构。(不然真不敢想象152层的网络要怎么跑起来TAT)
2.JPG

 CNN里的卷积大都是多通道的feature map和多通道的卷积核之间的操作(输入的多通道的feature map和一组卷积核做卷积求和得到一个输出的feature map),如果使用1x1的卷积核,这个操作实现的就是多个feature map的线性组合,可以实现feature map在通道个数上的变化。接在普通的卷积层的后面,配合激活函数,就可以实现network in network的结构了

你可能感兴趣的:(CNNs)