- [实践应用] 深度学习之模型性能评估指标
YuanDaima2048
深度学习工具使用深度学习人工智能损失函数性能评估pytorchpython机器学习
文章总览:YuanDaiMa2048博客文章总览深度学习之模型性能评估指标分类任务回归任务排序任务聚类任务生成任务其他介绍在机器学习和深度学习领域,评估模型性能是一项至关重要的任务。不同的学习任务需要不同的性能指标来衡量模型的有效性。以下是对一些常见任务及其相应的性能评估指标的详细解释和总结。分类任务分类任务是指模型需要将输入数据分配到预定义的类别或标签中。以下是分类任务中常用的性能指标:准确率(
- 大规模语言模型的书籍分享,从零基础入门到精通非常详细收藏我这一篇就够了
黑客-雨
语言模型人工智能自然语言处理学习大模型学习大模型入门大模型教程
在当今人工智能领域,大规模语言模型成为了研究和应用的热点之一。它们以其大规模的参数和强大的性能表现,推动着机器学习和深度学习技术的发展。对于GPT系列大规模语言模型的发展历程,有两点令人印象深刻。第一点是可拓展的训练架构与学习范式:Transformer架构能够拓展到百亿、千亿甚至万亿参数规模,并且将预训练任务统一为预测下一个词这一通用学习范式;第二点是对于数据质量与数据规模的重视:不同于BERT
- 机器学习与深度学习的区别
eqa11
机器学习
文章目录机器学习与深度学习的区别一、引言二、机器学习概述1、机器学习定义1.1、机器学习的应用2、机器学习算法三、深度学习概述1、深度学习定义1.1、深度学习的应用2、深度学习算法四、机器学习与深度学习的区别1、学习方法2、数据需求3、应用领域五、总结机器学习与深度学习的区别一、引言在人工智能的浪潮中,机器学习和深度学习无疑是最耀眼的两颗明星。它们在许多领域都取得了令人瞩目的成就,从自动驾驶汽车到
- 机器学习和深度学习的区别
不会代码的小林
机器学习
机器学习和深度学习在多个方面存在显著的区别,以下是对这些区别的详细阐述:一、定义与起源机器学习:是人工智能的一个分支领域,它使计算机能够从数据中学习并改进其性能,而无需进行显式编程。机器学习起源于20世纪50年代,随着算法和计算能力的不断发展而逐渐成熟。深度学习:则是机器学习的一个子领域,它利用深度神经网络模型进行学习和预测。深度学习在21世纪初开始兴起,特别是随着大数据的普及和计算能力的显著提升
- 机器学习和深度学习区别
hong161688
机器学习深度学习人工智能
机器学习和深度学习作为人工智能领域的两大重要分支,虽然有着紧密的联系,但在多个方面存在显著的差异。以下将从定义与起源、技术基础、模型复杂度、数据需求、计算资源需求、应用领域以及学习方式与特点等角度,详细阐述机器学习和深度学习的区别。一、定义与起源机器学习:是人工智能的一个分支,它让计算机能够在没有明确编程的情况下,通过观察和分析大量数据来学习并做出预测或决策。机器学习起源于20世纪50年代,随着算
- TensorFlow库详解:Python中的深度学习框架
极客代码
玩转AI玩转Python开发语言pythonpygame
引言TensorFlow是由GoogleBrain团队开发的开源机器学习库,用于各种复杂的数学计算,特别是涉及深度学习的计算。它提供了大量工具和资源,用于构建和训练机器学习模型。TensorFlow因其强大的功能和灵活性,在机器学习和深度学习领域得到了广泛应用。一、TensorFlow的基本结构TensorFlow的核心是计算图,它是一种用于表示计算的图。这种图可以包含许多节点,每个节点代表一个操
- 理解Softmax函数的原理和实现
Ven%
深度学习基础动手自然语言处理人工智能深度学习机器学习python
Softmax函数是机器学习和深度学习中非常基础且重要的一个概念,特别是在处理分类问题时。它的作用是将一个向量中的元素值转换成概率分布,使得每个元素的值都在0到1之间,并且所有元素值的总和为1。原理Softmax函数的数学表达式定义如下:softmax(zi)=ezi∑jezj\text{softmax}(z_i)=\frac{e^{z_i}}{\sum_{j}e^{z_j}}softmax(zi
- 【机器学习-神经网络】循环神经网络
刷刷刷粉刷匠
机器学习神经网络rnn
在机器学习和深度学习的领域中,循环神经网络(RNN)作为一种处理序列数据的强大工具,已经在诸多应用场景中展现出了巨大的潜力。RNN能够有效地捕捉序列数据中的时序依赖关系,因此在自然语言处理、时间序列预测和语音识别等任务中发挥着至关重要的作用。本文将对RNN进行深入探讨,从其基本理论、工作原理到实际应用及代码实现,全面剖析RNN在现代机器学习中的应用价值。1.RNN基础理论1.1RNN概述循环神经网
- pytorch pyro更高阶的优化器会使用更高阶的导数,比如二阶导数(Hessian矩阵)
zhangfeng1133
pytorch矩阵人工智能
在机器学习和深度学习中,优化器是用来更新模型参数以最小化损失函数的算法。通常,优化器会计算损失函数相对于参数的一阶导数(梯度),然后根据这些梯度来更新参数。但是,更高阶的优化器会使用更高阶的导数,比如二阶导数(Hessian矩阵),来指导参数的更新关于使用更高阶导数的优化器基类的描述。在机器学习和深度学习中,优化器是用来更新模型参数以最小化损失函数的算法。通常,优化器会计算损失函数相对于参数的一阶
- 一文讲清楚,AI、AGI、AIGC与AIGC、NLP、LLM,ChatGPT等概念
GPT-Hub
人工智能自然语言处理agigptchatgpt机器学习神经网络
本文旨在深入解析人工智能(AI)、通用人工智能(AGI)、人工智能生成内容(AIGC)、自然语言处理(NLP)、大型语言模型(LLM)以及ChatGPT等关键概念,并探讨它们在现代科技发展中的重要性和实际应用。1.AI(人工智能)人工智能(AI)是指通过计算机技术来模仿、扩展甚至超越人类智能的广泛领域。AI并不局限于一种特定的技术,而是涵盖了多种技术手段,包括机器学习和深度学习等子领域。AI的应用
- windows系统huggingface连接不上的解决方案
herosunly
windowshuggingface连接不上解决方案
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于大模型算法的研究与应用。曾担任百度千帆大模型比赛、BPAA算法大赛评委,编写微软OpenAI考试认证指导手册。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。授权多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。
- Langchain-Chatchat本地部署的解决方案
herosunly
大模型RAGlangchain-chat本地部署解决方案
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于大模型算法的研究与应用。曾担任百度千帆大模型比赛、BPAA算法大赛评委,编写微软OpenAI考试认证指导手册。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。授权多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。
- 昇思25天学习打卡
十分钟ll
昇思25天学习打卡pythonpytorch视觉检测图像处理
@[TOC]《昇思25天学习打卡营第02天|lulul》张量Tensor张量tensor是在机器学习和深度学习中广泛应用的数据概念,张量是多维数组的泛化,能够表示标量(0维张量)、向量(1维张量)、矩阵(2维张量)及更高维的数组。张量基本用法(mindspore)data=[1,0,1,0]x_data=Tensor(data)print(x_data,x_data.shape,x_data.dt
- 机器学习和深度学习·贝叶斯优化和optuna
0xMayL
#深度学习机器学习#模型评估机器学习深度学习人工智能
贝叶斯优化贝叶斯优化的思想先验:取点似然:假设分布取了n个点之后…后验:近似取得极值贝叶斯优化的数学过程在贝叶斯优化的数学过程当中,我们主要执行以下几个步骤:1定义需要估计的f(x)f(x)f(x)以及xxx的定义域2取出有限的n个xxx上的值,求解出这些xxx对应的f(x)f(x)f(x)(求解观测值)3根据有限的观测值,对函数分布进行假设(该假设被称为贝叶斯优化中的先验知识),得出该假设分布上
- 机器学习和深度学习中常见损失函数,包括损失函数的数学公式、推导及其在不同场景中的应用
早起星人
机器学习深度学习人工智能
目录引言什么是损失函数?常见损失函数介绍3.1均方误差(MeanSquaredError,MSE)3.2交叉熵损失(Cross-EntropyLoss)3.3平滑L1损失(SmoothL1Loss)3.4HingeLoss(合页损失)3.5二进制交叉熵损失(BinaryCross-EntropyLoss)3.6KL散度(KLDivergence)3.7Huber损失(HuberLoss)3.8对比
- Datawhale AI夏令营-task03
ghost_him
人工智能
DatawhaleAI夏令营-task03笔记来源:DatawhaleAI夏令营数据增强基础数据增强是一种在机器学习和深度学习领域常用的技术,尤其是在处理图像和视频数据时。**数据增强的目的是通过人工方式增加训练数据的多样性,从而提高模型的泛化能力,使其能够在未见过的数据上表现得更好。**数据增强涉及对原始数据进行一系列的变换操作,生成新的训练样本。这些变换模拟了真实世界中的变化,对于图像而言,数
- 什么是损失函数?
翰霖努力成为专家
万能科普数据挖掘计算机视觉机器学习人工智能自然语言处理神经网络深度学习
损失函数(LossFunction)是在机器学习和深度学习中用来评估模型预测值与真实值之间差异的函数。它的主要目的是量化模型预测的错误程度,以便在训练过程中通过最小化这个错误来优化模型。在监督学习中,我们通常有一组训练数据,包括输入特征(X)和对应的真实标签(Y)。模型的目标是学习一个从输入特征到输出标签的映射函数。损失函数就是用来衡量模型在这个映射过程中产生的误差的函数。不同类型的任务会使用不同
- 基于华为昇腾910B和LLaMA Factory多卡微调的实战教程
herosunly
大模型微调华为昇腾910B多卡微调实战教程
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于大模型算法的研究与应用。曾担任百度千帆大模型比赛、BPAA算法大赛评委,编写微软OpenAI考试认证指导手册。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。授权多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。
- 24.8.26学习心得
kkkkk021106
人工智能
验证数据集(ValidationSet)和测试数据集(TestSet)在机器学习和深度学习中都是非常重要的概念。它们各自有不同的用途和目的。下面详细解释两者之间的区别:1.验证数据集(ValidationSet)目的:超参数调整:验证数据集主要用于调整模型的超参数,如学习率、正则化系数、网络层数等。模型选择:用于选择最佳模型。例如,在交叉验证中,通过在验证数据集上的表现来选择性能最好的模型。防止过
- 男女密码
琴雪_山人
1、男人主动吻女人是突发事件,女人主动吻男人是预谋事件。2、传统的男人结婚前很清纯,结婚后开始乱搞;现代的男人结婚前乱搞,结婚后变得老实。3、“你还爱我吗?”这句话女人会在第一次和男人接吻、第一次被男人抚摸、第一次和男人上床、男人赚到第一笔钱的时候各问若干次。4、“你还爱我吗?”这句话男人一般会在第一次接吻未遂、第一次抚摸对方未遂、第一次和对方上床未遂、事业进入低谷时各问若干次。5、结婚前男人借钱
- 最新基于MATLAB机器学习、深度学习实践技术应用
weixin_贾
python深度学习MATLAB编程matlab机器学习深度学习
近年来,MATLAB在机器学习和深度学习领域的发展取得了显著成就。其强大的计算能力和灵活的编程环境使其成为科研人员和工程师的首选工具。在无人驾驶汽车、医学影像智能诊疗、ImageNet竞赛等热门领域,MATLAB提供了丰富的算法库和工具箱,极大地推动了人工智能技术的应用和创新。系统学习机器学习和深度学习的理论知识及对应的代码实现方法,掌握图像处理的基础知识,以及经典机器学习算法和最新的深度神经网络
- 神奇的微积分
科学的N次方
人工智能人工智能ai
微积分在人工智能(AI)领域扮演着至关重要的角色,以下是其主要作用:优化算法:•梯度下降法:微积分中的导数被用来计算损失函数相对于模型参数的梯度,这是许多机器学习和深度学习优化算法的核心。梯度指出了函数值增加最快的方向,通过沿着负梯度方向更新权重,可以最小化损失函数并优化模型。•反向传播:在神经网络训练中,微积分的链式法则用于计算整个网络中每个参数对于最终损失函数的影响(偏导数),这一过程就是反向
- AI相关技能
liuhehe321
人工智能
AI相关掌握Python语言,了解基本的机器学习和深度学习神经网络算法,会使用PyTorch框架进行深度学习模型训练,例如基于生成对抗网络的图像恢复处理对视频,文本、Embedding等的特征数据进行存储管理和分发的平台,存在共计7亿左右的特征数据,读取5K,写入2K左右的访问量,并对同一个特征有读写不同特征版本的需求•拥有MATLAB,R,SAS等语言3年以上的应用经验;•熟悉Python语言及
- 【深入了解PyTorch】模型优化和加速:PyTorch优化技术与库的应用
prince_zxill
Python实战教程人工智能与机器学习教程pytorch人工智能python
【深入了解PyTorch】模型优化和加速:PyTorch优化技术与库的应用模型优化和加速:PyTorch优化技术与库的应用模型剪枝(ModelPruning)模型量化(ModelQuantization)混合精度训练(MixedPrecisionTraining)总结模型优化和加速:PyTorch优化技术与库的应用在机器学习和深度学习领域,模型的性能和效率一直是研究和应用的重要关注点。随着模型越来
- AI手机是什么原理
小黄人软件
人工智能智能手机
AI手机,即搭载人工智能技术的智能手机,基于几个核心原理和技术来提升用户体验和手机的智能化程度。这些原理主要包括:机器学习和深度学习:AI手机利用机器学习算法,尤其是深度学习模型,来分析和理解用户数据(如照片、视频、文本和语音)。这些技术使得手机能够提供个性化的用户体验,比如智能推荐、语音识别和图像识别。自然语言处理(NLP):AI手机使用NLP技术来理解和生成人类语言,使得用户可以通过语音命令与
- 深度学习从入门到不想放弃-1
周博洋K
深度学习人工智能
基本功总是很香的,良好的基础才能决定上层建筑的质量和高度。从今天开始陆续连载一些深度学习的基础,包括概念,数学原理,代码,最近也确实没什么热点可以蹭先看机器学习和深度学习的对比:"数据和特征决定了机器学习的上限,而模型与算法则是逼近这个上限而已",机器学习和深度学习的本质区别之一是特征工程,而特征工程又是决定最终结果好坏的最重要的因素之一;上图最上面描述是机器学习的流程,如果让一个计算机理解输入的
- 如何学习和规划类似ChatGPT这种人工智能(AI)相关技术
ABEL in China
学习chatgpt人工智能
学习和规划类似ChatGPT这种人工智能(AI)相关技术的路径通常包括以下步骤:学习基础知识:学习编程:首先,你需要学习一种编程语言,例如Python,这是大多数人工智能项目的首选语言。数学基础:深度学习和自然语言处理等领域需要一定的数学基础,包括线性代数、微积分和概率统计。掌握机器学习和深度学习:了解机器学习和深度学习的基本概念,例如神经网络、卷积神经网络(CNN)和递归神经网络(RNN)。学习
- 生成式网络与判别式网络
一条小小yu
深度学习人工智能
生成式网络(GenerativeNetworks)和判别式网络(DiscriminativeNetworks)是两类在机器学习和深度学习中常见的网络类型,它们在数据处理和学习任务中扮演不同的角色。生成式网络(GenerativeNetworks)生成式网络旨在学习数据的分布,以便能够生成新的、之前未见过的数据点,这些数据点与训练集中的数据具有相同的分布。简而言之,生成式网络能够“生成”数据。这类网
- 预训练和微调在迁移学习中的作用
一条小小yu
迁移学习人工智能机器学习
在机器学习和深度学习中,"pre-training"(预训练)和"fine-tuning"(微调)是两个常见且重要的概念,它们通常在迁移学习场景中使用,以提高模型在特定任务上的性能。预训练(Pre-training)预训练是指在一个大型且通常与目标任务相关但不完全相同的数据集上训练模型的过程。这个阶段的目的是让模型学习到一些通用的特征或知识,这些特征或知识可以帮助模型在后续的特定任务上表现更好。预
- 初学者入门机器学习 (ML)的推荐教程
suoge223
机器学习实用指南机器学习人工智能
目录1.机器学习简介2.机器学习和深度学习有什么区别?3.机器学习的日常应用4.类型和分类5.理解机器学习算法6.偏差和方差7.评估指标8.从头开始构建MLWeb应用程序9.ML和Python教程编辑了解基本的机器学习概念并不难。有大量免费的在线博客文章、视频和编码教程可以引导您了解基础知识——从介绍性内容到常见应用程序,再到算法和应用技能。这些博客和教程并非晦涩难懂的公式和理论,而是从开始的通俗
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分