在Spark中,RDD被表示为对象,通过对象上的方法调用来对RDD进行转换。经过一系列的transformations定义RDD之后,就可以调用actions触发RDD的计算,action可以是向应用程序返回结果(count, collect等),或者是向存储系统保存数据(saveAsTextFile等)。在Spark中,只有遇到action,才会执行RDD的计算(即延迟计算),这样在运行时可以通过管道的方式传输多个转换。
要使用Spark,开发者需要编写一个Driver程序,它被提交到集群以调度运行Worker,如下图所示。Driver中定义了一个或多个RDD,并调用RDD上的action,Worker则执行RDD分区计算任务。
在Spark中创建RDD的创建方式可以分为三种:从集合中创建RDD;从外部存储创建RDD;从其他RDD创建。
1.从集合中创建
从集合中创建RDD,Spark主要提供了两种函数:parallelize和makeRDD
(1)使用parallelize()从集合创建
scala> val rdd = sc.parallelize(Array(1,2,3,4,5,6,7,8))
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at :24
(2)使用makeRDD()从集合创建
scala> val rdd1 = sc.makeRDD(Array(1,2,3,4,5,6,7,8))
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[1] at makeRDD at :24
2.由外部存储系统的数据集创建
包括本地的文件系统,还有所有Hadoop支持的数据集,比如HDFS、Cassandra、HBase等
scala> val rdd2= sc.textFile("hdfs://hadoop102:9000/RELEASE")
rdd2: org.apache.spark.rdd.RDD[String] = hdfs:// hadoop102:9000/RELEASE MapPartitionsRDD[4] at textFile at :24
3.从其他RDD创建
算子的转换形成RDD
RDD整体上分为Value类型和Key-Value类型
详情请见:https://blog.csdn.net/weixin_43233971/article/details/103076286
1.reduce(function)
作用:通过func函数聚集RDD中的所有元素,先聚合分区内数据,再聚合分区间数据。
创建一个RDD[Int]
scala> val rdd1 = sc.makeRDD(1 to 10,2)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[85] at makeRDD at :24
聚合RDD[Int]所有元素
scala> rdd1.reduce(_+_)
res50: Int = 55
创建一个RDD[String]
scala> val rdd2 = sc.makeRDD(Array(("a",1),("a",3),("c",3),("d",5)))
rdd2: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[86] at makeRDD at :24
聚合RDD[String]所有数据
scala> rdd2.reduce((x,y)=>(x._1 + y._1,x._2 + y._2))
res51: (String, Int) = (adca,12)
2.collect()
作用:在驱动程序中,以数组的形式返回数据集的所有元素。
创建一个RDD
scala> val rdd = sc.parallelize(1 to 10)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at :24
(2)将结果收集到Driver端
scala> rdd.collect
res0: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
3.count()
作用:返回RDD中元素的个数
创建一个RDD
scala> val rdd = sc.parallelize(1 to 10)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at :24
统计该RDD的条数
scala> rdd.count
res1: Long = 10
4.first()
作用:返回RDD中的第一个元素
创建一个RDD
scala> val rdd = sc.parallelize(1 to 10)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at :24
统计该RDD的条数
scala> rdd.first
res2: Int = 1
5.take(n)
作用:返回一个由RDD的前n个元素组成的数组
创建一个RDD
scala> val rdd = sc.parallelize(Array(2,5,4,6,8,3))
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[2] at parallelize at :24
统计该RDD的条数
scala> rdd.take(3)
res10: Array[Int] = Array(2, 5, 4)
6.takeOrdered(n)
作用:返回该RDD排序后的前n个元素组成的数组
创建一个RDD
scala> val rdd = sc.parallelize(Array(2,5,4,6,8,3))
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[2] at parallelize at :24
(2)统计该RDD的条数
scala> rdd.takeOrdered(3)
res18: Array[Int] = Array(2, 3, 4)
7.aggregate
参数:(zeroValue: U)(seqOp: (U, T) ⇒ U, combOp: (U, U) ⇒ U)
作用:aggregate函数将每个分区里面的元素通过seqOp和初始值进行聚合,然后用combine函数将每个分区的结果和初始值(zeroValue) 进行combine操作。这个函数最终返回的类型不需要和RDD中元素类型一致。
创建一个RDD
scala> var rdd1 = sc.makeRDD(1 to 10,2)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[88] at makeRDD at :24
(2)将该RDD所有元素相加得到结果
scala> rdd.aggregate(0)(_+_,_+_)
res22: Int = 55
8.flod(num)(function)
作用:折叠操作,aggregate的简化操作,seqop和combop一样。
创建一个RDD
scala> var rdd1 = sc.makeRDD(1 to 10,2)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[88] at makeRDD at :24
(2)将该RDD所有元素相加得到结果
scala> rdd.fold(0)(_+_)
res24: Int = 55
9.saveAsTextFile(path)
作用:将数据集的元素以textfile的形式保存到HDFS文件系统或者其他支持的文件系统,对于每个元素,Spark将会调用toString方法,将它装换为文件中的文本
10.saveAsSequenceFile(path)
作用:将数据集中的元素以Hadoop sequencefile的格式保存到指定的目录下,可以使HDFS或者其他Hadoop支持的文件系统。
11.saveAsObjectFile(path)
作用:用于将RDD中的元素序列化成对象,存储到文件中。
12.countByKey()
作用:针对(K,V)类型的RDD,返回一个(K,Int)的map,表示每一个key对应的元素个数。
创建一个PairRDD
scala> val rdd = sc.parallelize(List((1,3),(1,2),(1,4),(2,3),(3,6),(3,8)),3)
rdd: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[95] at parallelize at :24
(2)统计每种key的个数
scala> rdd.countByKey
res63: scala.collection.Map[Int,Long] = Map(3 -> 2, 1 -> 3, 2 -> 1)
13.foreach(function)
作用:在数据集的每一个元素上,运行函数func进行更新。
创建一个RDD
scala> var rdd = sc.makeRDD(1 to 5,2)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[107] at makeRDD at :24
(2)对该RDD每个元素进行打印
scala> rdd.foreach(println(_))
3
4
5
1
2
在实际开发中我们往往需要自己定义一些对于RDD的操作,那么此时需要主要的是,初始化工作是在Driver端进行的,而实际运行程序是在Executor端进行的,这就涉及到了跨进程通信,是需要序列化的。
1.创建一个类
class Search(s:String){
//过滤出包含字符串的数据
def isMatch(s: String): Boolean = {
s.contains(query)
}
//过滤出包含字符串的RDD
def getMatch1 (rdd: RDD[String]): RDD[String] = {
rdd.filter(isMatch)
}
//过滤出包含字符串的RDD
def getMatche2(rdd: RDD[String]): RDD[String] = {
rdd.filter(x => x.contains(query))
}
}
2.创建Spark主程序
object SeriTest {
def main(args: Array[String]): Unit = {
//1.初始化配置信息及SparkContext
val sparkConf: SparkConf = new
SparkConf().setAppName("WordCount").setMaster("local[*]")
val sc = new SparkContext(sparkConf)
//2.创建一个RDD
val rdd: RDD[String] = sc.parallelize(Array("hadoop", "spark", "hive", "atguigu"))
//3.创建一个Search对象
val search = new Search()
//4.运用第一个过滤函数并打印结果
val match1: RDD[String] = search.getMatche1(rdd)
match1.collect().foreach(println)
}
}
3.运行程序
Exception in thread "main" org.apache.spark.SparkException: Task not serializable
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:298)
at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:288)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:108)
at org.apache.spark.SparkContext.clean(SparkContext.scala:2101)
at org.apache.spark.rdd.RDD$$anonfun$filter$1.apply(RDD.scala:387)
at org.apache.spark.rdd.RDD$$anonfun$filter$1.apply(RDD.scala:386)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
at org.apache.spark.rdd.RDD.filter(RDD.scala:386)
at com.atguigu.Search.getMatche1(SeriTest.scala:39)
at com.atguigu.SeriTest$.main(SeriTest.scala:18)
at com.atguigu.SeriTest.main(SeriTest.scala)
Caused by: java.io.NotSerializableException: com.atguigu.Search
4.问题说明
//过滤出包含字符串的RDD
def getMatch1 (rdd: RDD[String]): RDD[String] = {
rdd.filter(isMatch)
}
在这个方法中所调用的方法isMatch()是定义在Search这个类中的,实际上调用的是this. isMatch(),this表示Search这个类的对象,程序在运行过程中需要将Search对象序列化以后传递到Executor端。
5. 解决方案
使类继承scala.Serializable即可。
class Search() extends Serializable{...}
1.Lineage
RDD只支持粗粒度转换,即在大量记录上执行的单个操作。将创建RDD的一系列Lineage(血统)记录下来,以便恢复丢失的分区。RDD的Lineage会记录RDD的元数据信息和转换行为,当该RDD的部分分区数据丢失时,它可以根据这些信息来重新运算和恢复丢失的数据分区。
(1)读取一个HDFS文件并将其中内容映射成一个个元组
scala> val wordAndOne = sc.textFile("/fruit.tsv").flatMap(_.split("\t")).map((_,1))
wordAndOne: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[22] at map at :24
(2)统计每一种key对应的个数
scala> val wordAndCount = wordAndOne.reduceByKey(_+_)
wordAndCount: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[23] at reduceByKey at :26
(3)查看“wordAndOne”的Lineage
scala> wordAndOne.toDebugString
res5: String =
(2) MapPartitionsRDD[22] at map at :24 []
| MapPartitionsRDD[21] at flatMap at :24 []
| /fruit.tsv MapPartitionsRDD[20] at textFile at :24 []
| /fruit.tsv HadoopRDD[19] at textFile at :24 []
(4)查看“wordAndCount”的Lineage
scala> wordAndCount.toDebugString
res6: String =
(2) ShuffledRDD[23] at reduceByKey at :26 []
+-(2) MapPartitionsRDD[22] at map at :24 []
| MapPartitionsRDD[21] at flatMap at :24 []
| /fruit.tsv MapPartitionsRDD[20] at textFile at :24 []
| /fruit.tsv HadoopRDD[19] at textFile at :24 []
(5)查看“wordAndOne”的依赖类型
scala> wordAndOne.dependencies
res7: Seq[org.apache.spark.Dependency[_]] = List(org.apache.spark.OneToOneDependency@5d5db92b)
(6)查看“wordAndCount”的依赖类型
scala> wordAndCount.dependencies
res8: Seq[org.apache.spark.Dependency[_]] = List(org.apache.spark.ShuffleDependency@63f3e6a8)
注意:RDD和它依赖的父RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency)。
2.窄依赖
窄依赖指的是每一个父RDD的Partition最多被子RDD的一个Partition使用,窄依赖我们形象的比喻为独生子女
3.宽依赖
宽依赖指的是多个子RDD的Partition会依赖同一个父RDD的Partition,会引起shuffle,总结:宽依赖我们形象的比喻为超生
4.DAG
DAG(Directed Acyclic Graph)叫做有向无环图,原始的RDD通过一系列的转换就就形成了DAG,根据RDD之间的依赖关系的不同将DAG划分成不同的Stage,对于窄依赖,partition的转换处理在Stage中完成计算。对于宽依赖,由于有Shuffle的存在,只能在parent RDD处理完成后,才能开始接下来的计算,因此宽依赖是划分Stage的依据。
5.任务划分
RDD任务切分中间分为:Application、Job、Stage和Task
1)Application:初始化一个SparkContext即生成一个Application
2)Job:一个Action算子就会生成一个Job
3)Stage:根据RDD之间的依赖关系的不同将Job划分成不同的Stage,遇到一个宽依赖则划分一个Stage。
4)Task:Stage是一个TaskSet,将Stage划分的结果发送到不同的Executor执行即为一个Task。
注意:Application->Job->Stage-> Task每一层都是1对n的关系。
6.RDD缓存
(1)DD通过persist方法或cache方法可以将前面的计算结果缓存,默认情况下 persist() 会把数据以序列化的形式缓存在 JVM 的堆空间中。
(2)但是并不是这两个方法被调用时立即缓存,而是触发后面的action时,该RDD将会被缓存在计算节点的内存中,并供后面重用。
(3)通过查看源码发现cache最终也是调用了persist方法,默认的存储级别都是仅在内存存储一份,Spark的存储级别还有好多种,存储级别在object StorageLevel中定义的。
在存储级别的末尾加上“_2”来把持久化数据存为两份
缓存有可能丢失,或者存储于内存的数据由于内存不足而被删除,RDD的缓存容错机制保证了即使缓存丢失也能保证计算的正确执行。通过基于RDD的一系列转换,丢失的数据会被重算,由于RDD的各个Partition是相对独立的,因此只需要计算丢失的部分即可,并不需要重算全部Partition。
7. RDD CheckPoint(检查点)
Spark中对于数据的保存除了持久化操作之外,还提供了一种检查点的机制,检查点(本质是通过将RDD写入Disk做检查点)是为了通过lineage做容错的辅助,lineage过长会造成容错成本过高,这样就不如在中间阶段做检查点容错,如果之后有节点出现问题而丢失分区,从做检查点的RDD开始重做Lineage,就会减少开销。检查点通过将数据写入到HDFS文件系统实现了RDD的检查点功能。
为当前RDD设置检查点。该函数将会创建一个二进制的文件,并存储到checkpoint目录中,该目录是用SparkContext.setCheckpointDir()设置的。在checkpoint的过程中,该RDD的所有依赖于父RDD中的信息将全部被移除。对RDD进行checkpoint操作并不会马上被执行,必须执行Action操作才能触发。
(1)设置检查点
scala> sc.setCheckpointDir("hdfs://hdp-1:9000/checkpoint")
(2)创建一个RDD
scala> val rdd = sc.parallelize(Array("hahah"))
rdd: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[14] at parallelize at :24
(3)将RDD转换为携带当前时间戳并做checkpoint
scala> val ch = rdd.map(_+System.currentTimeMillis)
ch: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[16] at map at :26
scala> ch.checkpoint
(4)多次打印结果
scala> ch.collect
res55: Array[String] = Array(atguigu1538981860336)
scala> ch.collect
res56: Array[String] = Array(atguigu1538981860504)
scala> ch.collect
res57: Array[String] = Array(atguigu1538981860504)
scala> ch.collect
res58: Array[String] = Array(atguigu1538981860504)