神经网络中的激活函数(附Python代码实现)

激活函数分类

  • 参考文档
    • CS2131N: Commonly used activation
      functions
    • 激活函数(ReLU, Swish,
      Maxout)
  • 代码链接
    • pyml by zhi

Activations函数图像

思维导图补充

恒等函数

  • 函数表达式: y = x y = x y=x
  • 函数特性: 线性

恒等函数

tanh

  • tanh, sinh,
    cosh
  • 函数表达式: y = t a n h ( x ) = e 2 x − 1 e 2 x + 1 y = {\rm tanh}(x) = {{e^{2x} - 1} \over {e^{2x} + 1}} y=tanh(x)=e2x+1e2x1
  • 函数特性: 非线性, 存在梯度弥散

tanh函数图像

Sigmoid

  • sigmoid
  • 函数表达式: y = e x e x + 1 y = {e^x \over {e^x + 1}} y=ex+1ex
  • 函数特性: 非线性, 存在梯度弥散

Sigmoid函数图像

softplus

  • 函数表达式: l o g ( e x + 1 ) {\rm log}(e^x + 1) log(ex+1)
  • 函数特性: 非线性

softplus函数图像

softplus函数图像, 非线性函数.

softsign

  • 函数表达式: x ( a b s ( x ) + 1 ) \frac{x} {({\rm abs}(x) + 1)} (abs(x)+1)x
  • 函数特性: 非线性

softsign函数图像

elu

  • 函数表达式: y = { x ,                    x ≥ 0 e x − 1 ,        x < 0 y = \left\{ {\begin{array}{lll}{x,\;\;\;\;\;\;\;\;\;x \ge 0}\\{{e^x} - 1,\;\;\;x < 0}\end{array}}\right. y={x,x0ex1,x<0
  • 函数特性: 非线性

elu函数图像

relu

  • 函数表达式: m a x ( x , 0 ) {\rm max}(x, 0) max(x,0)
  • 函数特性: 非线性+线性

relu函数图像

relu6

  • Convolutional Deep Belief Networks on CIFAR-10. A.
    Krizhevsky
  • 函数表达式: m i n ( m a x ( x , 0 ) , 6 ) {\rm min}({\rm max}(x, 0), 6) min(max(x,0),6)
  • 函数特性: 非线性+线性

relu6函数图像

leaky relu

  • “Rectifier Nonlinearities Improve Neural Network Acoustic Models”
    AL Maas, AY Hannun, AY Ng - Proc. ICML,
    2013
  • 函数表达式: y = { x ,              x ≥ 0 α x ,        x < 0 y = \left\{ {\begin{array}{lll}{x,\;\;\;\;\;\;x \ge 0}\\{\alpha x,\;\;\;x < 0}\end{array}} \right. y={x,x0αx,x<0
  • 函数特性: 非线性+线性

leakyrelu函数图像

selu

  • Self-Normalizing Neural Networks

  • 函数表达式: y = λ { x ,                          x ≥ 0 α ( e x − 1 ) ,        x < 0 y = \lambda \left\{ {\begin{array}{lll}{x,\;\;\;\;\;\;\;\;\;\;\;\;x \ge 0}\\{\alpha ({e^x} - 1),\;\;\;x < 0}\end{array}} \right. y=λ{x,x0α(ex1),x<0

  • 函数特性: 非线性, 自归一化

selu函数图像

Swish

  • Searching for Activation Functions" (Ramachandran et al.
    2017)
  • 函数表达式:
    y = x ⋅ s i g m o i d ( β x ) = e ( β x ) e ( β x ) + 1 ⋅ x y = x\cdot {\rm sigmoid}(\beta x) = {e^{(\beta x)} \over {e^{(\beta x)} + 1}} \cdot x y=xsigmoid(βx)=e(βx)+1e(βx)x
  • 函数特性: 非线性, 存在梯度弥散

Swish函数图像

实现代码


#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Date    : 2018-12-21 20:22:27
# @Author  : Zhi Liu ([email protected])
# @Link    : http://blog.csdn.net/enjoyyl
# @Version : $1.0$

import numpy as np


def linear(x):
    r"""linear activation

    :math:`y = x`

    Arguments:
        x {lists or array} -- inputs

    Returns:
        array -- outputs
    """
    return x


def sigmoid(x):
    r"""sigmoid function

    .. math::
        y = \frac{e^x}{e^x + 1}


    Arguments:
        x {lists or array} -- inputs

    Returns:
        array -- outputs
    """
    ex = np.exp(x)

    return ex / (ex + 1)


def tanh(x):
    r"""Computes tanh of `x` element-wise.

    Specifically

    .. math::
        y = {\rm tanh}(x) = {{e^{2x} - 1} \over {e^{2x} + 1}}.

    Arguments:
        x {lists or array} -- inputs

    Returns:
        array -- outputs

    """

    # e2x = np.exp(2 * x)
    # return (e2x - 1) / (e2x + 1)

    return np.tanh(x)


def softplus(x):
    r"""Computes softplus: `log(exp(x) + 1)`.

    :math:`{\rm log}(e^x + 1)`

    Arguments:
        x {lists or array} -- inputs

    Returns:
        array -- outputs

    """

    return np.log(np.exp(x) + 1)


def softsign(x):
    r"""Computes softsign: `x / (abs(x) + 1)`.

    :math:`\frac{x} {({\rm abs}(x) + 1)}`

    Arguments:
        x {lists or array} -- inputs

    Returns:
        array -- outputs

    """

    return x / (np.abs(x) + 1)


def elu(x):
    r"""Computes exponential linear element-wise. exp(x) - 1` if x < 0, `x` otherwise

    .. math::
        y = \left\{ {\begin{array}{*{20}{c}}{x,\;\;\;\;\;\;\;\;\;x \ge 0}\\{{e^x} - 1,\;\;\;x < 0}\end{array}} \right..

    See  `Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) `_  

    Arguments:
        x {lists or array} -- inputs

    Returns:
        array -- outputs
    """

    return np.where(x < 0, np.exp(x) - 1, x)


def relu(x):
    r"""Computes rectified linear: `max(x, 0)`.

    :math:`{\rm max}(x, 0)` 

    Arguments:
        x {lists or array} -- inputs

    Returns:
        array -- outputs
    """

    # x[x < 0] = 0
    # return x
    return np.where(x > 0, x, 0)


def relu6(x):
    r"""Computes Rectified Linear 6: `min(max(x, 0), 6)`.

    :math:`{\rm min}({\rm max}(x, 0), 6)`

    `Convolutional Deep Belief Networks on CIFAR-10. A. Krizhevsky `_  

    Arguments:
        x {lists or array} -- inputs

    Returns:
        array -- outputs
    """
    maxx = np.where(x > 0, x, 0)
    return np.where(maxx < 6, maxx, 6)


def selu(x):
    r"""Computes scaled exponential linear: `scale * alpha * (exp(x) - 1)` if < 0, `scale * x` otherwise.

    .. math::
        y = \lambda \left\{ {\begin{array}{*{20}{c}}{x,\;\;\;\;\;\;\;\;\;\;\;\;\;x \ge 0}\\{\alpha ({e^x} - 1),\;\;\;\;x < 0}\end{array}} \right.

    where, :math:`\alpha = 1.6732632423543772848170429916717` , :math:`\lambda = 1.0507009873554804934193349852946` 

    See `Self-Normalizing Neural Networks `_

    Arguments:
        x {lists or array} -- inputs

    Returns:
        array -- outputs
    """

    alpha = 1.6732632423543772848170429916717
    scale = 1.0507009873554804934193349852946

    return np.where(x < 0, scale * alpha * (np.exp(x) - 1), scale * x)


def crelu(x):
    r"""Computes Concatenated ReLU.

    Concatenates a ReLU which selects only the positive part of the activation
    with a ReLU which selects only the *negative* part of the activation.
    Note that as a result this non-linearity doubles the depth of the activations.
    Source: `Understanding and Improving Convolutional Neural Networks via
    Concatenated Rectified Linear Units. W. Shang, et
    al. `_

    Arguments:
        x {lists or array} -- inputs

    Returns:
        array -- outputs

    """

    return x


def leaky_relu(x, alpha=0.2):
    r"""Compute the Leaky ReLU activation function. 

    :math:`y = \left\{ {\begin{array}{*{20}{c}}{x,\;\;\;\;\;\;x \ge 0}\\{\alpha x,\;\;\;x < 0}\end{array}} \right.` 

    `Rectifier Nonlinearities Improve Neural Network Acoustic Models `_  


    Arguments:
        x {lists or array} -- inputs

    Returns:
        array -- outputs
    """

    return np.where(x < 0, alpha * x, x)


def swish(x, beta=1.0):
    r"""Computes the Swish activation function: `x * sigmoid(beta*x)`.

    :math:`y = x\cdot {\rm sigmoid}(\beta x) = {e^{(\beta x)} \over {e^{(\beta x)} + 1}} \cdot x`

    See `"Searching for Activation Functions" (Ramachandran et al. 2017) `_  

    Arguments:
        x {lists or array} -- inputs

    Returns:
        array -- outputs
    """

    ex = np.exp(beta * x)

    return (ex / (ex + 1)) * x


if __name__ == '__main__':

    import matplotlib.pyplot as plt

    colors = ['k', 'm', 'b', 'g', 'c', 'r',
              '-.m', '-.b', '-.g', '-.c', '-.r']
    activations = ['linear', 'tanh', 'sigmoid', 'softplus', 'softsign',
                   'elu', 'relu', 'selu', 'relu6', 'leaky_relu', 'swish']
    # 'elu', 'relu', 'selu', 'crelu', 'relu6', 'leaky_relu']
    x = np.linspace(-10, 10, 200)

    # for activation in activations:
    #     print("---show activation: " + activation + "---")
    #     y = globals()[activation](x)
    #     plt.figure()
    #     plt.plot(x, y, 'r')
    #     plt.title(activation + ' activation')
    #     plt.xlabel('x')
    #     plt.ylabel('y')
    #     plt.grid()
    #     plt.show()

    plt.figure()
    for activation, color in zip(activations, colors):
        print("---show activation: " + activation + "---")
        y = globals()[activation](x)
        plt.plot(x, y, color)
    plt.title('activation')
    plt.xlabel('x')
    plt.ylabel('y')
    plt.grid()
    plt.legend(activations)
    plt.show()

你可能感兴趣的:(机器学习,programming)