- 《剑指 Offer》专项突破版 - 面试题 56 : 二叉搜索树中两节点的值之和(详解 C++ 实现的两种方法)
melonyzzZ
数据结构算法c++开发语言数据结构面试
目录前言一、利用哈希表二、应用双指针前言题目链接:LCR056.两数之和IV-输入二叉搜索树-力扣(LeetCode)题目:给定一棵二叉搜索树和一个值k,请判断该二叉搜索树中是否存在值之和等于k的两个节点。假设二叉搜索树中节点的值均唯一。例如,在下图所示的二叉搜索树中,存在值之和等于12的两个节点(节点5和节点7),但不存在值之和为22的两个节点。分析:解决这个问题自然需要遍历二叉树中的所有节点,
- 【深度学习】学习率调度策略
黑白交界
深度学习学习深度学习
什么是学习率可以理解为模型在每一次迭代中的模型更新调整的幅度,“学习”新信息的速度。学习率定义了模型权重(参数)在梯度下降或其他优化算法中的更新步伐。较大的学习率意味着在每次参数更新时,模型会进行更大幅度的调整,而较小的学习率则意味着细致的、渐进的调整。适当的学习率可以帮助模型跳出局部最优解。当使用较大的学习率时,模型有可能跨越一些小的局部最优,从而找到全局最优解,但也有可能错过全局最优。因此,在
- 【核心算法篇七】《DeepSeek异常检测:孤立森林与AutoEncoder对比》
再见孙悟空_
「2025DeepSeek技术全景实战」算法分布式docker计算机视觉人工智能自然语言处理DeepSeek
大家好,今天我们来深入探讨一下《DeepSeek异常检测:孤立森林与AutoEncoder对比》这篇技术博客。我们将从核心内容、原理、应用场景等多个方面进行详细解析,力求让大家对这两种异常检测方法有一个全面而深入的理解。一、引言在数据科学和机器学习领域,异常检测(AnomalyDetection)是一个非常重要的任务。它的目标是从数据集中识别出那些与大多数数据显著不同的异常点。这些异常点可能是由于
- 【c++】容器:vector、list、map
大姨妈V
c++【c++从入门到精通】学习笔记
【c++】容器1.容器2.顺序容器3.向量4.双向链表5.关联容器6.映射参考:《c++从入门到精通》人民邮电出版社标准模板库STL的c++最有特色、最实用的部分之一。标准模板库包含了容器类、迭代器和算法三部分。容器:容器就是可以用于存放各种类型数据的数据结构。迭代器:迭代器可依次存取容器中的元素,在C++中称迭代器为指针,它们提供了访问容器、序列中每个元素的方法。算法:是用来操作容器中的元素的函
- STL-vector,set,string,map,queue,priority_queue,stack,pair算法笔记
cloudless_sky
STLc++stl
STL:standardtemplatelibrary标准模板库,封装了很多实用的容器。(一)vectorvector是一个容器。是个类。底层数据结构是数组。vector:向量,变长数组,即“长度根据需要而自动改变的数组”。使用前提:#includeusingnamespacestd;1、vector定义vectorname;以上是长度可以根据需要变化的一位数组,typename可以是任何基本类型
- Java开发实习面试笔试题(含答案)
小钊(求职中)
java面试开发语言springspringbootmaventomcat
在广州一家中大公司面试(BOSS标注是1000-9999人,薪资2-3k),招聘上写着Java开发,基本没有标注前端要求,但是到场知道是前后端分离人不分离。开始先让你做笔试(12道问答+4道SQL题),接着面试也是八股文之类的,没有问项目,没有做算法,现分享笔试和面试题目给大家做参考。(基础的没复习忘了不会,只会几道感觉已经寄了,最重要的是前端基本不会)一、笔试内容1.Java有哪些数据类型,什么
- 深度学习torch之19种优化算法(optimizer)解析
@Mr_LiuYang
论文阅读深度学习optimizerAdam学习率调整优化算法
提示:有谬误请指正摘要本博客详细介绍了多种常见的深度学习优化算法,包括经典的LBFGS、Rprop、Adagrad、RMSprop、Adadelta、ASGD、Adamax、Adam、AdamW、NAdam、RAdam以及SparseAdam等,通过对这些算法的公式和参数说明进行详细解析,博客旨在为机器学习工程师和研究人员提供清晰的理论指导,帮助读者选择合适的优化算法提升模型训练效率。父类定义Op
- ranges::set_intersection set_union set_difference set_symmetric_difference
大树青云
C++20C++set_union
std::ranges::set_intersection:是C++20引入的一个算法,用于计算两个已排序范围的交集。它将两个范围的交集元素复制到输出范围中。std::ranges::set_intersection用于计算两个已排序范围的交集。它将两个范围的交集元素复制到输出范围中。注意事项输入范围必须已排序。目标范围必须有足够空间存储交集结果。交集结果默认按升序排列。若元素重复,交集次数取两范
- 深度优先探索
^O^凡人多烦事
深度优先算法
DFS:时间复杂度:一位数组:O(n)二维数组+标记:O(n^2),有时候还可能使O(2^n),总而言之DFS的时间复杂度比较高。(个人认为)深度优先搜索算法(DFS)原理:深度优先搜索(DepthFirstSearch,DFS)是一种用于遍历或搜索树或图的算法。该方法从根节点(选择任意一个顶点作为起始节点,在无向图中适用)开始,尽可能深地沿着每条分支进行探索直到不能再前进为止;之后回退并重复这一
- 常用的高性能计算工具有哪些
这题有点难度
人工智能学习
在当今数字化时代,高性能计算(HPC)已成为推动科学、工程、技术以及商业创新的核心力量。无论是模拟宇宙的起源、设计新型航空器,还是训练复杂的人工智能模型,HPC都扮演着不可或缺的角色。本文将深入探讨高性能计算的定义、其背后的强大工具,以及它们如何助力各领域的突破性发展。一、高性能计算:定义与意义高性能计算(HPC)是一种利用超级计算机或大规模集群来处理复杂计算任务的技术。它通过并行计算和优化算法,
- 关于滑动窗口算法--最小替换字串长度
幼儿园口算大王
算法java数据结构滑动窗口
个人觉得日常遇到的关于滑动窗口的算法题主要分两种:固定窗口大小的滑动窗口在固定窗口大小的滑动窗口问题中,窗口的大小是预先定义好的,不会改变。这种类型的问题是相对简单的,因为一旦确定了窗口的大小,就可以直接遍历数组或列表,每次移动窗口一个元素的位置。常见的问题包括:最大/最小子数组和:给定一个数组和一个固定大小的窗口,找到所有可能的窗口的最大/最小和。窗口内元素的统计:例如,统计窗口内奇数或偶数元素
- 只能说算法做题全凭运气
幼儿园口算大王
算法java开发语言
问题描述在一款多人游戏中,每局比赛需要多个玩家参与。如果发现两名玩家至少一起玩过两局比赛,则可以认为这两名玩家互为队友。现在你有一份玩家(通过玩家ID标识)和比赛局次(通过比赛ID标识)的历史记录表,目标是帮助某位指定玩家找到所有符合条件的队友。例如样例1,已知以下比赛历史记录:玩家ID游戏ID11121321243241425253我们需要帮助ID为1的玩家找到所有至少与其一起玩过两次比赛的队友
- 动态规划算法套路解析
xl.liu
算法动态规划
动态规划概述动态规划是一种用于解决最优化问题的算法技术,它通过将复杂的问题分解为更简单的子问题,并利用这些子问题的解来构建原始问题的解。动态规划特别适用于那些拥有最优子结构和重叠子问题特性的问题。所谓最优子结构是指一个问题的最优解可以通过其子问题的最优解组合而成;而重叠子问题则意味着在求解过程中会多次遇到相同的子问题。解题套路框架面对一个动态规划问题时,通常可以遵循以下四个步骤来进行思考与解答:定
- Winograd 算法原理推导和python程序
weixin_47696437
算法python人工智能
一、算法背景Winograd算法是一种用于高效计算卷积的算法,其核心思想是通过减少乘法运算的次数来提高卷积计算的效率。在传统的卷积计算中,乘法运算的开销较大,而Winograd算法通过巧妙的变换,将卷积运算转化为在变换域中的矩阵乘法,从而减少乘法的数量,虽然会引入一些额外的加法和变换操作,但整体上在计算效率上有显著提升。二、一维卷积的Winograd推导2.Winograd优化通过多项式变换减少乘
- 国密算法SM1 SM2 SM3 SM4 SM9
象话
算法国密算法SM2SM3SM4
一、概述SM1-无具体实现SM1作为一种对称加密算法,由于其算法细节并未公开,且主要在中国国内使用,因此在国际通用的加密库(如BouncyCastle)中并不直接支持SM1算法。SM1算法的具体实现涉及国家密码管理局的规范,通常需要使用国家指定的安全模块(如SSF33、SC1/SC2卡)或通过国家认证的加密硬件/软件产品来实现。不过,如果你有合法授权并且在合规的环境下需要使用SM1算法,可能需要依
- [总结] 音视频开发工程师之路
二进制怪兽
音视频音视频
前言音视频开发是一个涉及多个技术领域的复杂方向,涵盖了音频处理、视频渲染、编解码技术、流媒体传输等多个方面。以下是一个简要的学习路线指南,帮助你逐步掌握音视频开发的核心技能。基础知识计算机科学基础:掌握操作系统、计算机网络、数据结构和算法等基础知识。数学基础:了解傅里叶变换、线性代数、信号处理等数学知识,这些是音视频编-解码和处理的基石。编程语言:熟练掌握C/C++,这是音视频开发中最常用的语言;
- 量子计算威胁下Java应用的安全防护:技术剖析与实践
老猿讲编程
量子计算java安全
在科技飞速发展的当下,众多公司与研究团队全力投入实现量子霸权的研究,使得量子计算机超越传统计算机运算效率的未来愈发临近。量子计算虽蕴含着巨大的潜力,但也给现有加密体系带来了严峻挑战。一旦量子计算机具备破解当前加密算法的能力,大量基于现有加密技术保护的数据和通信都将面临风险,“先窃取,后解密”的攻击策略可能成为现实。在此背景下,Java应用如何构建有效的防御机制,抵御量子攻击,成为了亟待解决的关键问
- 从0开始到华五复试 字符串
DitanZ
算法数据结构
344.反转字符串-力扣(LeetCode)字符串本质就是数组,采用双指针的方法,一个在前一个在后即可,不断交换。而还有一个点是,字符串有奇数偶数的情况,我们可以用一个i&s){for(inti=0,j=s.size()-1;i
- 国密算法SM1、SM2、SM3和SM4 具体的使用和区别
iOS开发的小学生
算法国密加密sm1sm2sm3sm4
国密算法是中国自主研发的密码算法,包括SM1、SM2、SM3和SM4,分别用于不同场景。以下是它们的具体使用和区别:SM1对称加密算法类型:对称加密密钥长度:128位使用场景:用于数据加密和解密,适用于金融、政务等领域。特点:安全性高,但算法未公开,需通过硬件加密设备使用。SM2非对称加密算法类型:非对称加密密钥长度:256位使用场景:用于数字签名、密钥交换和加密通信,适用于电子认证、电子商务等。
- c/c++蓝桥杯经典编程题100道(22)最短路径问题
tamak
算法数据结构图论c语言c++蓝桥杯
最短路径问题->返回c/c++蓝桥杯经典编程题100道-目录目录最短路径问题一、题型解释二、例题问题描述三、C语言实现解法1:Dijkstra算法(正权图,难度★★)解法2:Bellman-Ford算法(含负权边,难度★★★)四、C++实现解法1:Dijkstra算法(优先队列优化,难度★★☆)解法2:Floyd-Warshall算法(多源最短路径,难度★★★)五、总结对比表六、特殊方法与内置函数
- 【学习】验证数独的正确性
小飞哥咯咯咯
学习学习
源于面试的一个问题,在leetcode里也有这道题,参考站内的一篇文章。首先此问题的分析需要满足三个约束条件:每行不能有重复的数每列不能有重复的数每个3*3的方格中不能有重复的数其中前两个约束条件都是容易满足的,关键在第三个。使用三个与数独相同尺寸的二维数组,作为visited的tag,分别记录行、列和3*3方格的数据。关键在于上述的16行代码,接下来将详细分析:首先i/3和j/3会将当前的位置映
- AI技术在音乐产品中有哪些应用场景?
大数据人工智能音乐大数据
自动标注、平滑过渡、音乐鉴权、AI创作,当AI技术应用于音乐行业为人类的精神文化与娱乐生活带来便利和更多选择时,也是一件让人激动不已的事情。随着深度学习算法的出现、大数据和5G技术的成熟,AI人工智能已逐渐融入我们的生产生活中,在教育、医疗、政务办公、城市管理等多个方面发挥作用。随着AI技术在音乐行业研究及应用的深入,音乐人工智能已经不新鲜,很多新的应用和产品已经惊艳亮相。基于对于音乐技术及产品的
- 力扣面试经典算法150题:跳跃游戏 II
明月望秋思
Java学习算法算法leetcode面试java
跳跃游戏II今天的题目是力扣面试经典150题中的数组的中等难度题:跳跃游戏II。题目链接:https://leetcode.cn/problems/jump-game-ii/description/?envType=study-plan-v2&envId=top-interview-150题目描述给定一个非负整数数组nums,你最初位于数组的第一个位置。每个元素代表你在该位置可以跳跃的最大长度。你
- 蓝桥杯备赛经验帖
Blue.ztl
竞赛经验帖蓝桥杯职场和发展
蓝桥杯备赛经验帖作者:blue时间:2025.2.1文章目录蓝桥杯备赛经验帖1.为什么有这篇文章2.赛制3.比赛流程4.如何准备5.其他建议6.一些感悟1.为什么有这篇文章笔者近期发现,观看我写的两道第十五届蓝桥杯题解的人数逐渐增多,又是一年寒假一年蓝桥杯备赛季,突然想起去年这个时候,自己也是刚接触算法竞赛(属于比较晚的人了,大二才开始),面对即将到来的比赛也是非常的迷茫,无助,只会盲目的刷题,也
- 力扣 跳跃游戏 II
孑么
力扣leetcode算法职场和发展java动态规划贪心算法
贪心算法,存下每一步的最远,去达到全局的最小跳跃次数。题目从题中要达到最少次数,肯定是每一步尽可能走远一点。但注意j被限制了范围,这种不用想每一步遍历时肯定选最大的num[i],但要注意,题中是可以到达不是刚好到达,因此最后一步只要大于最后一个数都是可以的。从第一个数开始遍历,每一步贪心去选最远的距离,然后每个数都存下一个可达到的最远距离便于更新,因为贪心每一次都是基于当前数的最优,并不是全局最优
- AI编程赋能Python实现零编程决策树算法
智享食事
算法AI编程python
1.概念理解决策树算法是一种监督学习算法,用于分类和回归任务。它是一种基于树结构的模型,通过一系列的决策规则来对数据进行分类或预测。决策树的每个节点代表一个特征,每个分支代表该特征的一个属性值,而每个叶节点表示一个类别或一个数值。决策树的构建过程通常分为以下几个步骤:1.特征选择:选择最佳的特征来作为当前节点的划分特征,通常使用信息增益、基尼指数或者信息熵等准则来选择最优的特征。2.建立树结构:根
- 常用标准库之-std::iota
HL_LOVE_C
C/C++c++算法开发语言
定义与头文件std::iota是C++标准库头文件中提供的一个算法,用于将一个连续递增的值赋给指定范围内的元素。函数原型templatevoidiota(ForwardItfirst,ForwardItlast,Tvalue);ForwardIt:前向迭代器类型,用于指定元素范围。T:用于初始化和递增的值的类型。first:指向范围起始位置的迭代器。last:指向范围结束位置的迭代器。value:
- OpenCV的卡尔曼滤波器:实现和应用
雪域Code
opencv人工智能计算机视觉C/C++
OpenCV的卡尔曼滤波器:实现和应用卡尔曼滤波器(Kalmanfilter)是一种最优估计的算法,在众多领域有着广泛的应用,如控制系统、通信系统、机器人等。OpenCV作为一个计算机视觉库,也提供了对卡尔曼滤波器的支持。本文将介绍OpenCV中卡尔曼滤波器的基本原理、实现方法以及在图像处理中的应用。一、卡尔曼滤波器简介卡尔曼滤波器是一种用于状态估计和信号滤波的算法,主要针对线性、高斯分布的系统。
- python-leetcode 32.随机链表的复制
SylviaW08
leetcode链表算法
题目:给定一个长度为n的链表,每个节点包含一个额外增加的随机指针random,该指针可以指向链表中的任何节点或空节点。构造这个链表的深拷贝。深拷贝应该正好由n个全新节点组成,其中每个新节点的值都设为其对应的原节点的值。新节点的next指针和random指针也都应指向复制链表中的新节点,并使原链表和复制链表中的这些指针能够表示相同的链表状态。复制链表中的指针都不应指向原链表中的节点。例如,如果原链表
- 力扣每日一练之字符串Day6
京与旧铺
LeetCode刷起来leetcodejava算法
力扣每日一练之字符串Day6前面的话大家好!本篇文章将介绍2周搞定数据结构的题,本文将以三道题作为背景,介绍经典的数独以及排序算法,展示语言为java(博主学习语言为java)。今天呢,是博主开始刷力扣的第五天,如果有想要开始准备自己的算法面试的同学,可以跟着我的脚步一起,共同进步。大家都是并肩作战的伙伴,一起努力奋力前行,路漫漫其修远兮,吾将上下而求索,相信我们一定都可以拿到自己期望的offer
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><