一般是flume->kafka->SparkStreaming,如果非要从Flume直接将数据输送到SparkStreaming里面有两种方式,如下:
程序如下:
package cn.lijie
import org.apache.log4j.Level
import org.apache.spark.streaming.flume.FlumeUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{HashPartitioner, SparkConf, SparkContext}
/**
* User: lijie
* Date: 2017/8/3
* Time: 15:19
*/
object Flume2SparkStreaming01 {
def myFunc = (it: Iterator[(String, Seq[Int], Option[Int])]) => {
it.map(x => {
(x._1, x._2.sum + x._3.getOrElse(0))
})
}
def main(args: Array[String]): Unit = {
MyLog.setLogLeavel(Level.ERROR)
val conf = new SparkConf().setAppName("fs01").setMaster("local[2]")
val sc = new SparkContext(conf)
val ssc = new StreamingContext(sc, Seconds(10))
val ds = FlumeUtils.createStream(ssc, "10.1.9.102", 6666)
sc.setCheckpointDir("C:\\Users\\Administrator\\Desktop\\checkpoint")
val res = ds.flatMap(x => {
new String(x.event.getBody.array()).split(" ")
}).map((_, 1)).updateStateByKey(myFunc, new HashPartitioner(sc.defaultParallelism), true)
res.print()
ssc.start()
ssc.awaitTermination()
}
}
flume配置如下:
#agent名, source、channel、sink的名称
a1.sources = r1
a1.channels = c1
a1.sinks = k1
#具体定义source
a1.sources.r1.type = spooldir
a1.sources.r1.spoolDir = /home/hadoop/monitor
#具体定义channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 10000
a1.channels.c1.transactionCapacity = 100
#具体定义sink
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = 10.1.9.102
a1.sinks.k1.port = 6666
#组装source、channel、sink
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
启动flume:
/usr/java/flume/bin/flume-ng agent -n a1 -c conf -f /usr/java/flume/mytest/push.properties
结果:
但是这种方法必须要引入Spark官方的一个jar包,见官方的文档:点击跳转,将jar下载下来放到flume安装包的lib目录下即可,点击直接下载jar包
程序如下:
package cn.lijie
import java.net.InetSocketAddress
import org.apache.log4j.Level
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.flume.FlumeUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{HashPartitioner, SparkConf, SparkContext}
/**
* User: lijie
* Date: 2017/8/3
* Time: 15:19
*/
object Flume2SparkStreaming02 {
def myFunc = (it: Iterator[(String, Seq[Int], Option[Int])]) => {
it.map(x => {
(x._1, x._2.sum + x._3.getOrElse(0))
})
}
def main(args: Array[String]): Unit = {
MyLog.setLogLeavel(Level.WARN)
val conf = new SparkConf().setAppName("fs01").setMaster("local[2]")
val sc = new SparkContext(conf)
val ssc = new StreamingContext(sc, Seconds(10))
val addrs = Seq(new InetSocketAddress("192.168.80.123", 10086))
val ds = FlumeUtils.createPollingStream(ssc, addrs, StorageLevel.MEMORY_AND_DISK_2)
sc.setCheckpointDir("C:\\Users\\Administrator\\Desktop\\checkpointt")
val res = ds.flatMap(x => {
new String(x.event.getBody.array()).split(" ")
}).map((_, 1)).updateStateByKey(myFunc, new HashPartitioner(sc.defaultParallelism), true)
res.print()
ssc.start()
ssc.awaitTermination()
}
}
启动flume:
#agent名, source、channel、sink的名称
a1.sources = r1
a1.channels = c1
a1.sinks = k1
#具体定义source
a1.sources.r1.type = spooldir
a1.sources.r1.spoolDir = /home/hadoop/monitor
#具体定义channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 10000
a1.channels.c1.transactionCapacity = 100
#具体定义sink
a1.sinks.k1.type = org.apache.spark.streaming.flume.sink.SparkSink
a1.sinks.k1.hostname = 192.168.80.123
a1.sinks.k1.port = 10086
#组装source、channel、sink
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
启动flume:
/usr/java/flume/bin/flume-ng agent -n a1 -c conf -f /usr/java/flume/mytest/push.properties
结果
公用类:
MyLog类:
package cn.lijie
import org.apache.log4j.{Level, Logger}
import org.apache.spark.Logging
/**
* User: lijie
* Date: 2017/8/3
* Time: 15:36
*/
object MyLog extends Logging {
/**
* 设置日志级别
*
* @param level
*/
def setLogLeavel(level: Level): Unit = {
val flag = Logger.getRootLogger.getAllAppenders.hasMoreElements
if (!flag) {
logInfo("set log level ->" + level)
Logger.getRootLogger.setLevel(level)
}
}
}
Pom文件:
4.0.0
flume-sparkstreaming
flume-sparkstreaming
1.0-SNAPSHOT
1.7
1.7
UTF-8
2.10.6
1.6.1
2.6.4
org.scala-lang
scala-library
${scala.version}
org.apache.spark
spark-core_2.10
${spark.version}
org.apache.spark
spark-streaming_2.10
${spark.version}
org.apache.spark
spark-streaming-flume_2.10
${spark.version}
org.apache.hadoop
hadoop-client
${hadoop.version}
mysql
mysql-connector-java
5.1.38
src/main/scala
src/test/scala
net.alchim31.maven
scala-maven-plugin
3.2.2
compile
testCompile
-dependencyfile
${project.build.directory}/.scala_dependencies
org.apache.maven.plugins
maven-shade-plugin
2.4.3
package
shade
*:*
META-INF/*.SF
META-INF/*.DSA
META-INF/*.RSA
cn.lijie.Flume2SparkStreaming01
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_20641565/article/details/76685697