- 使用FinancialDatasets工具包进行财务数据分析
Zbb159
数据分析数据挖掘
##技术背景介绍在现代金融分析中,获取准确且及时的财务数据是至关重要的。FinancialDatasets提供了一个强大的API,可以获取超过16,000个股票的财务数据,时间跨度超过30年。通过与OpenAI的集成,我们能够创建智能化的财务分析助手,为投资者提供深度的市场洞察。##核心原理解析FinancialDatasets工具包通过RESTAPI接口访问财务数据,为每个公开交易的公司提供详细
- 标题:2025传统制造业护网实战指南:从合规防御到智能免疫的体系化进阶
上海云盾商务经理杨杨
网络
引言2025年,随着《工业互联网企业网络安全》三项国家标准全面实施,护网行动已从“合规检查”升级为“能力对抗”。传统制造业在数字化转型浪潮中,面临设备老旧、人才短缺、供应链风险激增等挑战,41.5%的企业计划年内增加安全预算。本文将结合新规要求与行业最佳实践,深度解析传统制造业如何构建“技术-管理-运营”三位一体的护网防御体系。一、传统制造业的护网困境:三大核心矛盾1.设备老旧化vs安全新标准历史
- FPGA 47 ,MIG 内存接口生成器深度解析( FPGA 中的 MIG 技术 )
北城笑笑
fpga开发fpga
目录前言一、基础理论1.1MIG介绍1.2结构框架1.2.1主要模块①用户接口层(UserInterfaceLayer)②控制逻辑层(ControLogicLayer)③校准逻辑(CalibrationLogic)④初始化与时序控制(Initialization&TimingControl)⑤物理层接口(PHY–PhysicalLayer)⑥IO引脚驱动(引脚分配与IO配置:Pinout&IOSt
- ResNet:深度卷积神经网络的里程碑
心想事“程”
小知识点cnn人工智能神经网络
一、引言在深度学习的发展历程中,深度卷积神经网络(CNN)不断演进,旨在提升对图像等数据的特征提取与分类能力。然而,随着网络层数的增加,传统CNN面临着梯度消失、梯度爆炸以及退化等棘手问题,训练变得愈发困难。2015年,由微软研究院提出的ResNet(ResidualNetworks,残差网络)横空出世,它以独特的残差学习思想,成功攻克了这些难题,在ImageNet竞赛中大放异彩,开创了深度神经网
- C语言指针进阶完全指南:从多级指针到函数指针的深度探索
给老吕螺丝
#C语言c语言开发语言
掌握指针基础后,你将开启C语言真正的力量之门。本文通过实战代码示例和内存布局图解,带你系统攻克指针进阶技术。一、指针核心回顾与进阶重点核心概念:指针本质:存储内存地址的变量间接访问:通过地址操作数据指针大小:64位系统固定8字节(与类型无关)进阶重点:多级指针:处理复杂间接关系动态内存管理:精准控制内存生命周期函数指针:实现代码抽象与回调复杂结构:构建链表等动态数据结构二、多级指针:指针的指针内存
- 视觉算法之卷积神经网络
清风AI
深度学习算法详解及代码复现计算机视觉cnn神经网络深度学习python课程设计毕业设计
定义与特点卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专为处理具有网格结构的数据而设计的深度学习模型。其独特的结构和功能使其在图像处理、语音识别等领域展现出卓越的性能:CNN的核心设计理念源于对生物视觉系统的模仿。通过模拟大脑皮层中视网膜和视觉皮层的层次化结构,CNN能够有效地捕捉图像中的局部特征并逐步抽象为高层语义信息。这种设计使得CNN特别擅长处理图像和音
- 卷积神经网络架构的演进:从AlexNet到EfficientNet
t0_54manong
大数据与人工智能cnn架构人工智能个人开发
在过去的8.5年里,深度学习取得了飞速的进步。回溯到2012年,AlexNet在ImageNet上的Top-1准确率仅为63.3%,而如今,借助EfficientNet架构和师生训练法,我们已经能达到超过90%的准确率。本文将聚焦于卷积神经网络(CNN)架构的演变,深入探究其背后的基本原理。一些关键术语在深入了解各种架构之前,我们需要明确几个关键术语。更宽的网络意味着卷积层中有更多的特征图(滤波器
- MySQL存储结构深度解析:Buffer Pool与Page管理
hdzw20
mysql复习mysql数据库
MySQL存储结构解析:BufferPool与Page管理在MySQL的InnoDB存储引擎中,BufferPool是其核心组件之一,它极大地提升了数据库的性能。理解BufferPool的内部结构和工作机制,对于优化MySQL数据库至关重要。本文将讨论BufferPool的结构、三大链表、改进型LRU算法以及ChangeBuffer机制。1.BufferPool结构:控制块与缓存页BufferPo
- 毫秒级断电+AI预警:广州曼顿智能空开如何重新定义电气安全?
mdkk678
人工智能安全
在智慧城市、工业4.0与“双碳”目标的推动下,电力系统正经历从传统被动响应向主动智能防控的深刻变革。广州曼顿科技推出的智能空气开关,凭借毫秒级断电技术与AI预警系统的深度融合,不仅填补了传统断路器在响应速度、故障预判和能效管理上的技术空白,更以“零时差守护”理念重塑了电气安全的新范式。一、技术突破:毫秒级断电的“物理屏障”传统断路器依赖机械结构实现过载保护,其响应时间通常在数十毫秒以上,难以应对瞬
- 一文搞懂 Cursor 内部工作原理~
zz_jesse
介绍了Cursor,一个结合了AI技术的代码编辑器,它通过深度学习和语义索引的方式,提升了开发者的工作效率。Cursor通过与VSCode相似的界面和功能,以及自己的AI特性,实现了代码的智能化编辑和错误检查。译文从这开始~~你可能已经看到新闻:OpenAI正以高达30亿美元的价格收购Windsurf!与此同时,Cursor的母公司Anysphere也正在以90亿美元估值融资9亿美元!这对于代码生
- 【AI大模型前沿】OmniAudio:阿里通义实验室的空间音频生成模型,开启沉浸式体验新时代
寻道AI小兵
AI大模型-前沿技术追踪人工智能音视频开源AIGC语言模型
系列篇章No.文章1【AI大模型前沿】深度剖析瑞智病理大模型RuiPath:如何革新癌症病理诊断技术2【AI大模型前沿】清华大学CLAMP-3:多模态技术引领音乐检索新潮流3【AI大模型前沿】浙大携手阿里推出HealthGPT:医学视觉语言大模型助力智能医疗新突破4【AI大模型前沿】阿里QwQ-32B:320亿参数推理大模型,性能比肩DeepSeek-R1,免费开源5【AI大模型前沿】TRELLI
- 为什么HashMap选择红黑树而非AVL树?揭秘JDK的深度权衡
今天你慧了码码码码码码码码码码
JavaSE基础java开发语言
当你为HashMap的链表转红黑树机制赞叹时,是否曾疑惑:为什么是红黑树而不是更“平衡”的AVL树?这个看似简单的选择背后,是JDK开发团队在数据结构领域数十年的经验结晶。本文将用真实场景数据,彻底解析这个高频面试题的底层逻辑。一、痛点直击:链表性能崩溃的噩梦想象一个极端场景:恶意攻击者精心构造大量哈希冲突的key,使HashMap退化成超长链表。此时查询效率从O(1)暴跌至O(n)!JDK8的解
- 前端开发实践:疑难问题与解决方案总结
沈大大520
实际开发所遇见的问题vue.js前端
本文将分享前端开发实践:疑难问题与解决方案总结,希望对大家在面试过程中有一定的帮助!作者:沈大大更新时间:2025-03-13前言在前端开发过程中,我们经常会遇到各种各样的技术难题。本文将分享在实际开发中遇到的一些典型问题及其解决方案,希望能给其他开发者一些参考和启发。性能优化类问题1.首屏加载过慢问题描述页面首次加载时间超过3秒用户等待时间过长白屏时间明显问题分析打包体积过大第三方库引入过多未进
- H5页面点击调起腾讯/百度/高德地图APP
注意:在手机端测试时发现了一个问题,用百度浏览器只能调用百度地图app的,对腾讯/高德地图是无效的,于是我用qq浏览器测试,结果发现qq浏览器是都可以调起的。一:腾讯地图(api文档)window.open(`http://apis.map.qq.com/uri/v1/marker?marker=coord:${this.latitude},${this.longitude};addr:${thi
- 深入解读 Qwen3 技术报告(一):引言
小爷毛毛(卓寿杰)
大模型AIGC深度学习基础/原理人工智能自然语言处理python语言模型深度学习
重磅推荐专栏:《大模型AIGC》《课程大纲》《知识星球》本专栏致力于探索和讨论当今最前沿的技术趋势和应用领域,包括但不限于ChatGPT和StableDiffusion等。我们将深入研究大型模型的开发和应用,以及与之相关的人工智能生成内容(AIGC)技术。通过深入的技术解析和实践经验分享,旨在帮助读者更好地理解和应用这些领域的最新进展1.引言:迎接大型语言模型的新纪元我们正处在一个由人工智能(AI
- 目标检测YOLO实战应用案例100讲-基于深度学习的自动驾驶目标检测算法研究(续)
林聪木
目标检测YOLO深度学习
目录基于双蓝图卷积的轻量化自动驾驶目标检测算法5.1引言5.2DarkNet53网络冗余性分析5.3双蓝图卷积网络5.4实验结果及分析基于深度学习的自动驾驶目标检测算法研究与应用传统的目标检测算法目标检测基线算法性能对比与选择相关理论和算法基础2.1引言2.2人工神经网络2.3FCOS目标检测算法2.4复杂交通场景下的目标检测难点与FCOS改进方案基于FCOS的目标检测算法改进3.1引言3.2Re
- 百度地图迁徙大数据深度解析与实战指南
百度地图迁徙大数据深度解析与实战指南在数字化时代,人口流动数据已成为洞察社会经济活动的关键指标。百度地图依托海量位置数据和AI算法打造的"迁徙大数据"平台,为城市规划、交通管理、商业选址等领域提供了重要决策支持。本文将系统性解析百度地图迁徙大数据的查看方法、核心功能及实战应用场景,帮助读者快速掌握这一数据驱动的决策工具。一、迁徙大数据的核心价值迁徙大数据通过聚合手机用户的定位信息,构建全国范围的人
- AI人工智能遇上TensorFlow:技术融合新趋势
AI大模型应用之禅
人工智能tensorflowpythonai
AI人工智能遇上TensorFlow:技术融合新趋势关键词:人工智能、TensorFlow、深度学习、神经网络、机器学习、技术融合、AI开发摘要:本文深入探讨了人工智能技术与TensorFlow框架的融合发展趋势。我们将从基础概念出发,详细分析TensorFlow在AI领域的核心优势,包括其架构设计、算法实现和实际应用。文章包含丰富的技术细节,如神经网络原理、TensorFlow核心算法实现、数学
- 边缘人工智能与医疗AI融合发展路径:技术融合与应用前景(上)
Allen_Lyb
数智化医院2025人工智能健康医疗算法
引言人工智能技术正以前所未有的速度改变着医疗保健领域,从辅助诊断到个性化治疗,AI应用的广度和深度不断拓展。在这一浪潮中,边缘人工智能(EdgeAI)作为一种新兴技术范式,正成为推动医疗AI创新的关键力量。边缘AI区别于传统的云计算模式,它将数据处理和AI模型部署在数据源头附近,实现快速响应和隐私保护。这种特性使其在医疗保健领域具有独特优势,特别是在实时监测、紧急响应和患者隐私保护等方面。边缘AI
- 上位机软件开发哪家好?
深圳市由你创科技
上位机开发自动化c#labviewc++pythonc语言matlab
在工业自动化、医疗设备、新能源等领域,上位机软件如同“指挥官”,负责设备控制、数据分析和人机交互,直接影响生产效率和系统稳定性。然而,面对多协议兼容性差、开发周期不可控、后期维护成本高等难题,企业如何选择一家技术过硬、服务优质的上位机软件开发服务商?深圳市由你创科技有限公司凭借全栈技术能力、垂直行业经验及高效服务体系,深圳市由你创成为众多企业首选的上位机开发合作伙伴。本文深度解析上位机开发的关键要
- 408考研逐题详解:2010年第22题——显存带宽
CS创新实验室
考研复习408考研计算机考研408真题解析
2010年第22题假定一台计算机的显示存储器用DRAM芯片实现,若要求显示分辨率为1600×1200,颜色深度为24位,帧频为85Hz,显存总带宽的50%用来刷新屏幕,则需要的显存总带宽至少约为()A.245Mbps\qquadB.979Mbps\qquadC.1958Mbps\qquadD.7834Mbps解析本题主要考查显存总带宽的计算方法,涉及计算机显示系统的基本参数,包括分辨率、颜色深度、
- 深入企业内部的MCP知识(二):FastMCP客户端三大核心能力深度解析:资源、工具与提示的全场景实践
炼丹上岸
大模型#MCPmicrosoft人工智能python交互mcp
引言:MCP协议交互的“三驾马车”在ModelContextProtocol(MCP)的技术生态中,资源(Resources)、工具(Tools)与提示(Prompts)构成了客户端与服务器交互的核心支柱。FastMCP通过统一的API设计,将这三者转化为可直接调用的编程接口,既隐藏了底层协议的复杂性,又保留了高度的灵活性。本文将从技术原理、实战案例到性能优化,系统拆解这三大能力的使用方法与协同逻
- [AXI] AXI Interconnect
AXIInterconnectIP详细介绍概述AXIInterconnect专为AXI4、AXI3和AXI4-Lite协议设计,提供多个AXI主设备(Master)和从设备(Slave)之间的灵活互联功能。它通过模块化架构实现高效的数据路由、协议转换、数据宽度转换和时钟域转换,广泛应用于FPGA和SoC系统设计,特别是在需要复杂AXI总线互联的场景,如多核处理器系统、视频处理、网络通信和硬件加速器
- java PDF模板生成并导出(文字、表格、图片)
最新word转pdf模板导出可分页带图片http://t.csdn.cn/JmWZb1:jar包com.itextpdfitext-asian5.2.0com.itextpdfitextpdf5.4.32:制作一个pdf模板创建表单–编辑域3:工具类:/***pdf模板导出**@parammap*@paramout*@throwsException*/publicstaticvoidcreatPd
- 共享内存的创建和使用
Ring__Rain
C++c++
以下是对ShareMemoryPubManager::CreateShm函数的详细解读,结合代码逻辑和Windows共享内存机制分析:1.函数功能概述该函数用于创建并映射一个共享内存区域,将其封装到自定义结构体SwathShareMemory中,并存储到成员变量m_shmQueue中。核心步骤包括:构造共享内存名称:基于shm_prefix和shm_id生成唯一标识。创建文件映射对象:调用Crea
- 2025B卷 - 华为OD机试七日集训第5期 - 按算法分类,由易到难,循序渐进,玩转OD
哪 吒
搬砖工逆袭Java架构师华为od算法华为OD机试2025B卷java
目录推荐刷题方法:一、适合人群二、本期训练时间三、如何参加四、七日集训第5期五、精心挑选21道高频100分经典题目,作为入门。第1天、逻辑分析第2天、逻辑分析第3天、逻辑分析第4天、字符串处理第5天、正则表达式第6天、深度优先搜索dfs第7天、深度优先搜索dfs六、集训总结国内直接使用ChatGPT4o、o3、o4-mini-high、GPT-4.5、GPT4.1、Gemini2.5pro0605
- 国货之光|暴雨服务器亮相中银数智峰会
BAOYUCompany
大数据服务器
9月13日,第五届中国银行数智峰会(CIFS2024)在北京圆满落幕。暴雨作为国内专业的数据中心产品及服务提供商受邀参加本次会议,与数百位银行业信息技术、金融科技、电子银行、信息安全、互联网金融、风险管理等相关领域的高层领导和负责人共同探讨了银行数字化转型的新趋势、新挑战和新机遇。大会现场,暴雨展示了在金融行业数字化转型中的创新成果,其中国产化服务器H200成为了展区的一大亮点。这款2U双路旗舰服
- 2025B卷 - 华为OD机试七日集训第2期 - 按算法分类,由易到难,循序渐进,玩转OD(Python/JS/C/C++)
目录推荐刷题方法:一、适合人群二、本期训练时间三、如何参加四、七日集训第2期五、精心挑选21道高频100分经典题目,作为入门。第1天、逻辑分析第2天、数组第3天、双指针第4天、贪心算法第5天、字符串处理第6天、深度优先搜索DFS第7天、动态规划六、集训总结国内直接使用ChatGPT4o、o3、o4-mini-high、GPT-4.5、GPT4.1、Gemini2.5pro0605、ClaudeSo
- JVM——性能:百万级TPS系统的性能优化之道
黄雪超
JVMjvm性能优化java
引入在数字化浪潮席卷全球的当下,企业级应用的用户规模呈指数级增长,对系统性能的要求也愈发严苛。当系统面临百万级TPS(每秒事务处理量)的高并发挑战时,性能瓶颈将直接影响用户体验与业务发展。本文将深入探讨百万级TPS系统的性能优化之道,从代码底层优化到JVM深度调优,结合实际案例与技术原理,为开发者提供一套完整的性能优化方案。在互联网、金融、电商等行业,百万级TPS已成为许多核心系统的标配。以双十一
- 深度学习核心知识简介和模型调参
研术工坊
深度学习知识和技巧深度学习人工智能python
深度学习模型调优就像调制一道复杂的菜肴,需要掌握多种"调料"的用法。本文将为您详解这些关键"调料",帮助您烹饪出高性能的模型。###核心参数及其影响####1️⃣Loss(损失函数)**基本介绍**:衡量模型预测与真实值差距的指标,是模型优化的指南针。**生活类比**:想象你在教小孩认识动物:-**完美情况**:小孩看到猫说"猫",看到狗说"狗"→Loss=0-**有错误**:小孩看到猫说"狗"→
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>