使用树莓派进行简易人脸识别

http://shumeipai.nxez.com/2017/03/16/raspberry-pi-face-recognition-system.html

使用树莓派2和OpenCV制作一个简易的人脸识别和追踪系统。

所需硬件

需要:树莓派2、Pi Camera
非必须(如果需要追踪人脸运动,需要一个有两个马达的小云台):云台
使用树莓派进行简易人脸识别_第1张图片

安装OpenCV

1

2

3

sudo apt-get update

sudo apt-get upgrade

sudo apt-get install python-opencv

安装PiCamera

由于我没有使用USB摄像头,而是用了特殊的Pi Camera,样子如下图, 所以需要安装PiCamera来控制摄像头。

使用树莓派进行简易人脸识别_第2张图片

安装PiCamera:

1

2

3

sudo apt-get install python-pip

sudo apt-get install python-dev

sudo pip install picamera

至此人脸识别所需要的准备工作已经完成,可以使用下面的演示代码进行测试。

示例代码

Demo.1

第一个演示只使用单核,由于树莓派的性能有限,在只使用一个CPU核心的情况下视频的帧数非常之低,只有5帧左右,效果不太理想, 另外代码中通过Servo Blaster 控制云台的电机,来实现追踪人脸的功能,不过考虑到这个功能不是必须,所以不在此进行介绍。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

### Imports ###################################################################

 

from picamera.array import PiRGBArray

from picamera import PiCamera

import time

import cv2

import os

 

 

### Setup #####################################################################

 

# Center coordinates

cx = 160

cy = 120

 

os.system( "echo 0=150 > /dev/servoblaster" )

os.system( "echo 1=150 > /dev/servoblaster" )

 

xdeg = 150

ydeg = 150

 

# Setup the camera

camera = PiCamera()

camera.resolution = ( 320, 240 )

camera.framerate = 60

rawCapture = PiRGBArray( camera, size=( 320, 240 ) )

 

# Load a cascade file for detecting faces

face_cascade = cv2.CascadeClassifier( '/home/pi/opencv-2.4.9/data/lbpcascades/lbpcascade_frontalface.xml' )

 

t_start = time.time()

fps = 0

 

 

### Main ######################################################################

 

# Capture frames from the camera

for frame in camera.capture_continuous( rawCapture, format="bgr", use_video_port=True ):

 

    image = frame.array

 

    # Use the cascade file we loaded to detect faces

    gray = cv2.cvtColor( image, cv2.COLOR_BGR2GRAY )

    faces = face_cascade.detectMultiScale( gray )

 

    print "Found " + str( len( faces ) ) + " face(s)"

 

    # Draw a rectangle around every face and move the motor towards the face

    for ( x, y, w, h ) in faces:

 

        cv2.rectangle( image, ( x, y ), ( x + w, y + h ), ( 100, 255, 100 ), 2 )

        cv2.putText( image, "Face No." + str( len( faces ) ), ( x, y ), cv2.FONT_HERSHEY_SIMPLEX, 0.5, ( 0, 0, 255 ), 2 )

 

        tx = x + w/2

        ty = y + h/2

 

        if   ( cx - tx >  10 and xdeg <= 190 ): xdeg += 3 os.system( "echo 0=" + str( xdeg ) + " > /dev/servoblaster" )

        elif ( cx - tx < -10 and xdeg >= 110 ):

            xdeg -= 3

            os.system( "echo 0=" + str( xdeg ) + " > /dev/servoblaster" )

 

        if   ( cy - ty >  10 and ydeg >= 110 ):

            ydeg -= 3

            os.system( "echo 1=" + str( ydeg ) + " > /dev/servoblaster" )

        elif ( cy - ty < -10 and ydeg <= 190 ): ydeg += 3 os.system( "echo 1=" + str( ydeg ) + " > /dev/servoblaster" )

 

    # Calculate and show the FPS

    fps = fps + 1

    sfps = fps / ( time.time() - t_start )

    cv2.putText( image, "FPS : " + str( int( sfps ) ), ( 10, 10 ), cv2.FONT_HERSHEY_SIMPLEX, 0.5, ( 0, 0, 255 ), 2 )   

 

    # Show the frame

    cv2.imshow( "Frame", image )

    cv2.waitKey( 1 )

 

    # Clear the stream in preparation for the next frame

    rawCapture.truncate( 0 )

 

GIF 使用树莓派进行简易人脸识别_第3张图片


另外请注意由于我使用HaarCascade来进行人脸检测, 需要使用到识别人脸的XML,这些人脸识别的XML文件是随着OpenCV一起安装的,不需要额外的安装, 不过当你在自己树莓派上运行时,请注意调整XML文件的路径, 就是调整这一行:

 

1

2

# Load a cascade file for detecting faces

face_cascade = cv2.CascadeClassifier( '你的XML文件路径' )

Demo.2

通过同时使用不同的XML文件,可以实现同时识别不同物体的功能,比如下面这段代码可以同时识别人脸和黑色手机,识别手机所需要的XML文件是由Radamés Ajna和Thiago Hersan制作的, 来源在这里。 更进一步的,我们可以根据自己的需要训练自己的Cascade文件,Naotoshi Seo在此处 给出了详细的教程, 比较简易的还有Thorsten Ball的香蕉识别教程。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

### Imports ###################################################################

 

from picamera.array import PiRGBArray

from picamera import PiCamera

 

import time

import cv2

import os

import pygame

 

 

### Setup #####################################################################

 

os.putenv('SDL_FBDEV', '/dev/fb1')

 

# Setup the camera

camera = PiCamera()

camera.resolution = ( 320, 240 )

camera.framerate = 40

rawCapture = PiRGBArray( camera, size=( 320, 240 ) )

 

# Load the cascade files for detecting faces and phones

face_cascade = cv2.CascadeClassifier( '/home/pi/opencv-2.4.9/data/lbpcascades/lbpcascade_frontalface.xml' )

phone_cascade = cv2.CascadeClassifier( 'cascade.xml' )

 

t_start = time.time()

fps = 0

 

 

### Main ######################################################################

 

# Capture frames from the camera

for frame in camera.capture_continuous( rawCapture, format="bgr", use_video_port=True ):

 

    image = frame.array

 

    # Look for faces and phones in the image using the loaded cascade file

    gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)

    faces  = face_cascade.detectMultiScale(gray)

    phones = phone_cascade.detectMultiScale(gray)

 

    # Draw a rectangle around every face

    for (x,y,w,h) in faces:

        cv2.rectangle( image, ( x, y ), ( x + w, y + h ), ( 255, 255, 0 ), 2 )

        cv2.putText( image, "Face No." + str( len( faces ) ), ( x, y ), cv2.FONT_HERSHEY_SIMPLEX, 0.5, ( 0, 0, 255 ), 2 )

 

    # Draw a rectangle around every phone

    for (x,y,w,h) in phones:

        cv2.rectangle( image, ( x, y ), ( x + w, y + h ), ( 255, 0, 0 ), 2 )

        cv2.putText( image, "iPhone", ( x, y ), cv2.FONT_HERSHEY_SIMPLEX, 0.5, ( 0, 255, 255 ), 2 )

 

    # Calculate and show the FPS

    fps = fps + 1

    sfps = fps / ( time.time() - t_start )

    cv2.putText( image, "FPS : " + str( int( sfps ) ), ( 10, 10 ), cv2.FONT_HERSHEY_SIMPLEX, 0.5, ( 0, 0, 255 ), 2 )

 

    cv2.imshow( "Frame", image )

    cv2.waitKey( 1 )

 

    # Clear the stream in preparation for the next frame

    rawCapture.truncate( 0 )

 

GIF 使用树莓派进行简易人脸识别_第4张图片


由于使用了更多的XML文件进行识别,帧数降低到了2~3帧。

 

Demo.3

为了解决帧数较低的问题,有一个比较简单的方法就是跳帧,可以不对每一帧图像都进行识别,而是隔几帧识别一次(因为最初因为懒不想将程序写成多线程,但是为了提高帧数,所以有了这个蛋疼的方法…)。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

### Imports ###################################################################

 

from picamera.array import PiRGBArray

from picamera import PiCamera

 

import time

import cv2

import os

import pygame

 

 

### Setup #####################################################################

 

os.putenv( 'SDL_FBDEV', '/dev/fb1' )

 

# Setup the camera

camera = PiCamera()

camera.resolution = ( 320, 240 )

camera.framerate = 30

rawCapture = PiRGBArray( camera, size=( 320, 240 ) )

 

fcounter = 0

facefind = 0

 

# Load a cascade file for detecting faces

face_cascade = cv2.CascadeClassifier( '/home/pi/opencv-2.4.9/data/lbpcascades/lbpcascade_frontalface.xml' )

 

t_start = time.time()

fps = 0

 

### Main ######################################################################

 

# Capture frames from the camera

for frame in camera.capture_continuous( rawCapture, format="bgr", use_video_port=True ):

 

    image = frame.array

 

    # Run the face detection algorithm every four frames

    if fcounter == 3:

 

        fcounter = 0

 

        # Look for faces in the image using the loaded cascade file

        gray = cv2.cvtColor( image, cv2.COLOR_BGR2GRAY )

        faces = face_cascade.detectMultiScale( gray )

 

        print "Found " + str( len( faces ) ) + " face(s)"

 

        if str( len( faces ) ) != 0:

            facefind = 1

            facess = faces

        else:

            facefind = 0

 

        # Draw a rectangle around every face

        for ( x, y, w, h ) in faces:

            cv2.rectangle( image, ( x, y ), ( x + w, y + h ), ( 200, 255, 0 ), 2 )

            cv2.putText( image, "Face No." + str( len( facess ) ), ( x, y ), cv2.FONT_HERSHEY_SIMPLEX, 0.5, ( 0, 0, 255 ), 2 )

            facess = faces

 

    else:

        if facefind == 1 and str( len( facess ) ) != 0:

 

            # Continue to draw the rectangle around every face

            for ( x, y, w, h ) in facess:

                cv2.rectangle( image, ( x, y ), ( x + w, y + h ), ( 200, 255, 0 ), 2 )

                cv2.putText( image, "Face No." + str( len( facess ) ), ( x, y ), cv2.FONT_HERSHEY_SIMPLEX, 0.5, ( 0, 0, 255 ), 2 )

 

    fcounter += 1

 

 

    # Calculate and show the FPS

    fps = fps + 1

    sfps = fps / ( time.time() - t_start )

    cv2.putText( image, "FPS : " + str( int( sfps ) ), ( 10, 10 ), cv2.FONT_HERSHEY_SIMPLEX, 0.5, ( 0, 0, 255 ), 2 )

 

    cv2.imshow( "Frame", image )

    cv2.waitKey( 1 )

 

    # Clear the stream in preparation for the next frame

    rawCapture.truncate( 0 )

 

GIF 使用树莓派进行简易人脸识别_第5张图片


这样子帧数会提高到10帧左右,已经不像原来那么卡顿,但是当你移动速度很快的时候,识别框会出现滞后。

 

Demo.4

毕竟跳帧只是权宜之计,这个版本使用了全部的CPU核心,帧数稳定在了15帧左右。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

### Imports ###################################################################

 

from picamera.array import PiRGBArray

from picamera import PiCamera

from functools import partial

 

import multiprocessing as mp

import cv2

import os

import time

 

 

### Setup #####################################################################

 

os.putenv( 'SDL_FBDEV', '/dev/fb0' )

 

resX = 320

resY = 240

 

cx = resX / 2

cy = resY / 2

 

os.system( "echo 0=150 > /dev/servoblaster" )

os.system( "echo 1=150 > /dev/servoblaster" )

 

xdeg = 150

ydeg = 150

 

 

# Setup the camera

camera = PiCamera()

camera.resolution = ( resX, resY )

camera.framerate = 60

 

# Use this as our output

rawCapture = PiRGBArray( camera, size=( resX, resY ) )

 

# The face cascade file to be used

face_cascade = cv2.CascadeClassifier('/home/pi/opencv-2.4.9/data/lbpcascades/lbpcascade_frontalface.xml')

 

t_start = time.time()

fps = 0

 

 

### Helper Functions ##########################################################

 

def get_faces( img ):

 

    gray = cv2.cvtColor( img, cv2.COLOR_BGR2GRAY )

    faces = face_cascade.detectMultiScale( gray )

 

    return faces, img

 

def draw_frame( img, faces ):

 

    global xdeg

    global ydeg

    global fps

    global time_t

 

    # Draw a rectangle around every face

    for ( x, y, w, h ) in faces:

 

        cv2.rectangle( img, ( x, y ),( x + w, y + h ), ( 200, 255, 0 ), 2 )

        cv2.putText(img, "Face No." + str( len( faces ) ), ( x, y ), cv2.FONT_HERSHEY_SIMPLEX, 0.5, ( 0, 0, 255 ), 2 )

 

        tx = x + w/2

        ty = y + h/2

 

        if   ( cx - tx > 15 and xdeg <= 190 ): xdeg += 1 os.system( "echo 0=" + str( xdeg ) + " > /dev/servoblaster" )

        elif ( cx - tx < -15 and xdeg >= 110 ):

            xdeg -= 1

            os.system( "echo 0=" + str( xdeg ) + " > /dev/servoblaster" )

 

        if   ( cy - ty > 15 and ydeg >= 110 ):

            ydeg -= 1

            os.system( "echo 1=" + str( ydeg ) + " > /dev/servoblaster" )

        elif ( cy - ty < -15 and ydeg <= 190 ): ydeg += 1 os.system( "echo 1=" + str( ydeg ) + " > /dev/servoblaster" )

 

    # Calculate and show the FPS

    fps = fps + 1

    sfps = fps / (time.time() - t_start)

    cv2.putText(img, "FPS : " + str( int( sfps ) ), ( 10, 10 ), cv2.FONT_HERSHEY_SIMPLEX, 0.5, ( 0, 0, 255 ), 2 )

 

    cv2.imshow( "Frame", img )

    cv2.waitKey( 1 )

 

 

### Main ######################################################################

 

if __name__ == '__main__':

 

    pool = mp.Pool( processes=4 )

    fcount = 0

 

    camera.capture( rawCapture, format="bgr"

 

    r1 = pool.apply_async( get_faces, [ rawCapture.array ] )   

    r2 = pool.apply_async( get_faces, [ rawCapture.array ] )   

    r3 = pool.apply_async( get_faces, [ rawCapture.array ] )   

    r4 = pool.apply_async( get_faces, [ rawCapture.array ] )   

 

    f1, i1 = r1.get()

    f2, i2 = r2.get()

    f3, i3 = r3.get()

    f4, i4 = r4.get()

 

    rawCapture.truncate( 0 )   

 

    for frame in camera.capture_continuous( rawCapture, format="bgr", use_video_port=True ):

        image = frame.array

 

        if   fcount == 1:

            r1 = pool.apply_async( get_faces, [ image ] )

            f2, i2 = r2.get()

            draw_frame( i2, f2 )

 

        elif fcount == 2:

            r2 = pool.apply_async( get_faces, [ image ] )

            f3, i3 = r3.get()

            draw_frame( i3, f3 )

 

        elif fcount == 3:

            r3 = pool.apply_async( get_faces, [ image ] )

            f4, i4 = r4.get()

            draw_frame( i4, f4 )

 

        elif fcount == 4:

            r4 = pool.apply_async( get_faces, [ image ] )

            f1, i1 = r1.get()

            draw_frame( i1, f1 )

 

            fcount = 0

 

        fcount += 1

 

        rawCapture.truncate( 0 )

帧数上升到了13左右,而且识别框没有延迟。

GIF 使用树莓派进行简易人脸识别_第6张图片

Demo.5

搞定了低帧数问题,我又试了试多核加跳帧…帧数可到28帧左右。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

### Imports ###################################################################

 

from picamera.array import PiRGBArray

from picamera import PiCamera

from functools import partial

 

import multiprocessing as mp

import cv2

import os

 

 

### Setup #####################################################################

 

os.putenv( 'SDL_FBDEV', '/dev/fb0' )

 

resX = 320

resY = 240

 

# Setup the camera

camera = PiCamera()

camera.resolution = ( resX, resY )

camera.framerate = 90

 

t_start = time.time()

fps = 0

 

# Use this as our output

rawCapture = PiRGBArray( camera, size=( resX, resY ) )

 

# The face cascade file to be used

face_cascade = cv2.CascadeClassifier( '/home/pi/opencv-2.4.9/data/lbpcascades/lbpcascade_frontalface.xml' )

 

 

### Helper Functions ##########################################################

 

def get_faces( img ):

 

    gray = cv2.cvtColor( img, cv2.COLOR_BGR2GRAY )

    return face_cascade.detectMultiScale( gray ), img

 

def draw_frame( img, faces ):

 

    global fps

    global time_t

 

    # Draw a rectangle around every face

    for ( x, y, w, h ) in faces:

        cv2.rectangle( img, ( x, y ),( x + w, y + h ), ( 200, 255, 0 ), 2 )

 

    # Calculate and show the FPS

    fps = fps + 1

    sfps = fps / (time.time() - t_start)

    cv2.putText(img, "FPS : " + str( int( sfps ) ), ( 10, 10 ), cv2.FONT_HERSHEY_SIMPLEX, 0.5, ( 0, 0, 255 ), 2 )

 

    cv2.imshow( "Frame", img )

    cv2.waitKey( 1 )

 

 

### Main ######################################################################

 

if __name__ == '__main__':

 

    pool = mp.Pool( processes=4 )

 

    i = 0

    rList = [None] * 17

    fList = [None] * 17

    iList = [None] * 17

 

    camera.capture( rawCapture, format="bgr"

 

    for x in range ( 17 ):

        rList[x] = pool.apply_async( get_faces, [ rawCapture.array ] )

        fList[x], iList[x] = rList[x].get()

        fList[x] = []

 

    rawCapture.truncate( 0 )   

 

    for frame in camera.capture_continuous( rawCapture, format="bgr", use_video_port=True ):

        image = frame.array

 

        if   i == 1:

            rList[1] = pool.apply_async( get_faces, [ image ] )

            draw_frame( iList[2], fList[1] )

 

        elif i == 2:

            iList[2] = image

            draw_frame( iList[3], fList[1] )

 

        elif i == 3:

            iList[3] = image

            draw_frame( iList[4], fList[1] )

 

        elif i == 4:

            iList[4] = image

            fList[5], iList[5] = rList[5].get()

            draw_frame( iList[5], fList[5] )

 

        elif i == 5:

            rList[5] = pool.apply_async( get_faces, [ image ] )

            draw_frame( iList[6], fList[5] )

 

        elif i == 6:

            iList[6] = image

            draw_frame( iList[7], fList[5] )

 

        elif i == 7:

            iList[7] = image

            draw_frame( iList[8], fList[5] )

 

        elif i == 8:

            iList[8] = image

            fList[9], iList[9] = rList[9].get()

            draw_frame( iList[9], fList[9] )

 

        elif i == 9:

            rList[9] = pool.apply_async( get_faces, [ image ] )

            draw_frame( iList[10], fList[9] )

 

        elif i == 10:

            iList[10] = image

            draw_frame( iList[11], fList[9] )

 

        elif i == 11:

            iList[11] = image

            draw_frame( iList[12], fList[9] )

 

        elif i == 12:

            iList[12] = image

            fList[13], iList[13] = rList[13].get()

            draw_frame( iList[13], fList[13] )

 

        elif i == 13:

            rList[13] = pool.apply_async( get_faces, [ image ] )

            draw_frame( iList[14], fList[13] )

 

        elif i == 14:

            iList[14] = image

            draw_frame( iList[15], fList[13] )

 

        elif i == 15:

            iList[15] = image

            draw_frame( iList[16], fList[13] )

 

        elif i == 16:

            iList[16] = image

            fList[1], iList[1] = rList[1].get()

            draw_frame( iList[1], fList[1] )

 

            i = 0

 

        i += 1

 

        rawCapture.truncate( 0 )

 

GIF 使用树莓派进行简易人脸识别_第7张图片

你可能感兴趣的:(深度学习)