ncnn中Yolov3DetectionOutput层参数含义

Yolov3DetectionOutput   125               3 1 104 114 124 125 0=4 1=3 2=0.300000 3=0.450000 -23304=18,15.000000,15.000000,30.000000,30.000000,60.000000,60.000000,60.000000,60.000000,90.000000,90.000000,120.000000,120.000000,120.000000,120.000000,150.000000,150.000000,180.000000,180.000000 -23305=9,6.000000,7.000000,8.000000,3.000000,4.000000,5.000000,0,1.000000,2.000000 -23306=3,32.000000,16.000000,8.000000

按顺序来
125:层输出标号
3:有3个输入
1:1个输出
104 114 124 125:3个输入与1个输出对应层输出编号
0=4:检测任务有4个class
1=3:???
2=0.300000:置信度
3=0.450000 :nms

-23304=18:anchor有18/2=9组
15.000000,15.000000,30.000000,30.000000,60.000000,60.000000,60.000000,60.000000,90.000000,90.000000,120.000000,120.000000,120.000000,120.000000,150.000000,150.000000,180.000000,180.000000:9组anchor的宽高

-23305=9:anchor有9组
6.000000,7.000000,8.000000,3.000000,4.000000,5.000000,0,1.000000,2.000000:9组anchor分配的顺序为678345012

-23306=3:yolo层共有3个头
32.000000,16.000000,8.000000:3个头对应的anchor_scale,对应anchor标号678,345,012

你可能感兴趣的:(深度学习,ncnn,yolov3)