- JVM性能调优实战:从理论到线上问题排查
SuperMale-zxq
项目实战javapythonc++jvmjava-ee
JVM性能调优实战:从理论到线上问题排查线上系统突然变慢,CPU飙升,内存告警,业务超时……面对这些危机时刻,你是束手无策还是胸有成竹?本文将带你掌握JVM性能调优的核心方法,从理论到实战,解决真实环境中的性能难题。为什么大多数JVM调优都失败了?某电商平台的"双11"大促活动,系统突然响应缓慢,交易量锐减。运维团队紧急扩容,开发团队调整GC参数,架构师建议重启服务……一系列"标准操作"后,系统性
- 基于6自由度搬运机器人完成单关节伺服控制实现的详细步骤及示例代码
max500600
机器人机器人
以下是基于6自由度搬运机器人完成单关节伺服控制实现的详细步骤及示例代码:1.系统概述单关节伺服控制是指对机器人的单个关节进行精确的位置、速度或力矩控制。在6自由度搬运机器人中,每个关节通常由伺服电机驱动,通过反馈传感器(如编码器)获取关节的实际位置,然后控制器根据期望位置与实际位置的误差来调整电机的输出,以实现精确控制。2.硬件准备6自由度搬运机器人:包含6个可独立运动的关节,每个关节由伺服电机驱
- 《Python实战进阶》小技巧 1:一篇文章讲完网站部署如何优化网站照片加载/访问提速的方法
带娃的IT创业者
Python实战进阶pythonphp网络
一篇文章讲完网站部署如何优化网站照片加载/访问提速的方法摘要在网络速度较低的情况下,大量照片会导致网站加载缓慢。本文档详细介绍了优化家庭网站中照片加载速度的多种方法和技术。以下是主要的优化策略及其具体实现:1.图片压缩与优化自动压缩上传的图片:通过Python脚本使用PIL库压缩图片,调整大小、转换模式,并保存为优化的JPEG格式。批量优化现有图片:编写脚本对文件夹中的图片进行批量处理,包括创建备
- ribbon负载均衡策略说明
高飞的Leo
ribbon负载均衡java
Ribbon负载均衡策略说明和比较类名说明特点使用场景RoundRobinRule基于轮询算法选择服务实例。简单、公平,每个实例被选择的机会均等。适用于所有服务实例性能相近的场景。RandomRule随机选择服务实例。简单、随机,每个实例被选择的概率相同。适用于需要随机负载均衡的场景。WeightedResponseTimeRule根据服务实例的响应时间分配权重,选择响应时间短的实例。动态调整权重
- Deepseek-R1大模型微调实战技术深度解析
大势下的牛马
搭建本地gptDeepseek大模型评测微调
一、Deepseek-R1架构特性与微调适配性分析1.1核心架构创新对微调的影响Deepseek-R1基于Deepseek-V3-Base架构,通过MoE(Mixture-of-Experts)与MLA(Multi-HeadLatentAttention)的协同设计,实现了参数规模与计算效率的平衡。其6710亿参数总量中,每个token仅激活37B参数的机制,使得微调过程中可针对不同任务动态调整专
- 基于时间序列预测的推理服务弹性扩缩容实战指南:(行业案例+数学推导+源码解析)
燃灯工作室
Ai计算机视觉语音识别目标检测机器学习人工智能
技术原理(数学公式)整体架构请求量预测→扩缩容决策→资源配置动态调整三阶段闭环,周期为5-30分钟核心预测模型(时间序列预测)LSTM预测公式(CSDN兼容格式):$$h_t=\text{LSTM}(x_t,h_{t-1})\\\hat{y}_{t+1}=W_h\cdoth_t+b_h$$其中Wh∈Rd×1W_h\in\mathbb{R}^{d\times1}Wh∈Rd×1为权重矩阵,ddd为隐藏
- 干货:Farrow设计实现详解
jz_ddk
算法机器学习人工智能python
Farrow结构的系数设计是其实现可变分数延迟或动态群时延调整的关键步骤。其核心思想是将每个滤波器抽头的系数表示为多项式函数(通常以参数uuu为变量),通过优化多项式系数实现不同延迟下的滤波特性。以下是Farrow系数设计的主要方法及步骤:1.设计目标与基本模型Farrow结构的一般形式为:H(z,μ)=∑m=0Mμm⋅(∑k=0Nck,mz−k)H(z,\mu)=\sum_{m=0}^{M}\m
- CSS伸缩盒模型(弹性盒子)
申朝先生
css前端
伸缩盒模型(Flexbox,FlexibleBoxLayout)是CSS中一种一维布局模型,用于更高效地处理元素的对齐、分布和响应式布局。其核心思想是让容器内的子元素(称为“项目”)能够灵活地自动调整大小和位置以适应不同屏幕尺寸和内容变化。1.核心特性1.1容器与项目容器:使用display:flex或display:inline-flex定义的父元素。项目:容器内的直接子元素,默认沿容器的主轴排
- 如何应对 IT 项目中的需求变更?
需求管理
在IT项目管理中,需求变更是常见且难以避免的问题,无论是由于市场环境变化、技术更新还是用户需求调整,需求变更都可能影响项目进度、成本和质量。因此,项目团队必须具备有效的应对策略。首先,明确需求管理的流程、设立变更控制机制以及与客户和相关方保持密切沟通是确保项目顺利推进的关键。在此基础上,项目经理需要做出适时的决策,灵活调整计划,并保持对变更带来影响的预判能力。本文将深入探讨如何有效管理和应对IT项
- 使用DeepSeek自动生成PPT:高效办公的终极指南
点我头像干啥
Ai人工智能信息可视化深度学习
引言在现代职场中,PPT(PowerPoint演示文稿)已经成为沟通、展示和分享想法的重要工具。然而,制作一份高质量的PPT往往需要耗费大量时间和精力,尤其是在内容整理、排版设计和样式调整方面。幸运的是,随着人工智能技术的发展,像DeepSeek这样的工具可以帮助我们自动化生成PPT,极大地提升工作效率。本文将详细介绍如何使用DeepSeek自动生成PPT,并分享一些实用技巧,帮助你快速上手。一、
- PyTorch 中的维度操作详解
萝卜小白
pytorch人工智能python
在PyTorch中,维度(dimension)是描述张量形状的一种方式。维度操作是PyTorch中非常重要的功能,常用于调整张量的形状以适配各种计算需求。以下是常见的维度操作及其示例。1.维度的概念回顾一个二维张量(矩阵)的形状是(行数,列数)。一个三维张量的形状是(深度,行数,列数)。维度的索引从0开始,最外层是axis=0,向内依次递增。2.维度的操作(1)求和(Sum)sum(dim)的作用
- CSS中粘性定位
~废弃回忆 �༄
HTMLcss前端htmlCSS中粘性定位
1.如何设置为粘性定位?给元素设置posttion:sticky即可实现粘性定位.可以使用left,right,top,bottom四个属性调整位置,不过最常用的是top值.2.粘性定位的参考点在哪里?离他最近的一个拥有"滚动机制"的祖先元素,即便这个祖先不是最近的真实可滚动祖先.3.粘性定位元素的特点?不会脱离文档流,它是一种专门用于窗口滚动时的新的定位方式.最常用的值是top值;粘性定位和浮动
- 凯立德C-CAR端口修改器:自定义导航系统通信端口
朱佳顺
本文还有配套的精品资源,点击获取简介:凯立德C-CAR端口修改器是一款旨在帮助用户自定义和调整凯立德导航软件通信端口设置的工具。它简化了根据不同车辆配置或个人需求调整端口参数的过程,用户只需拖放NaviConfig.dll文件到指定位置即可完成修改。这对于需要在不同车辆间切换导航设备或解决设备不兼容问题的用户特别有用。然而,在使用时需要注意数据备份和确认来源,防止数据丢失或系统损坏。1.凯立德C-
- Windows域渗透之域管理
人间酒中仙
红队笔记之域渗透windows笔记学习网络安全域渗透红队笔记
Windows域管理一、使用组策略进行软件分发1、操作步骤2、PowerShell命令示例二、配置组策略(GPO)设置1、设置密码策略2、禁用USB存储设备三、批量用户管理1、创建单个用户2、批量导入用户四、部署和管理共享驱动器1、使用组策略登录脚本自动映射驱动器2、使用PowerShell映射网络驱动器五、管理Windows更新1、使用组策略配置自动更新2、使用PowerShell管理Windo
- 机器学习中的梯度到底是什么?(chat-gpt问答)
湫怿
机器学习gpt人工智能梯度
1、梯度是对损失函数求导吗?是的,梯度是对损失函数(或目标函数)求导数值化后的结果。梯度告诉我们目标函数在某个点上的方向性和变化率,这些信息是优化算法推进参数评估和更新的重要指标。在机器学习中,我们通过不断调整参数,使目标函数达到最小值,从而实现模型的训练和学习。2、为什么梯度要求偏导来求解?梯度是一个向量,它的方向指向函数值增加最快的方向,其大小表示函数值的变化率。为了确定梯度的方向和大小,需要
- 机器学习中的梯度下降是什么意思?
yuanpan
机器学习人工智能
梯度下降(GradientDescent)是机器学习中一种常用的优化算法,用于最小化损失函数(LossFunction)。通过迭代调整模型参数,梯度下降帮助模型逐步逼近最优解,从而提升模型的性能。1.核心思想梯度下降的核心思想是利用损失函数的梯度(即导数)来指导参数的更新方向。具体来说:梯度:梯度是损失函数对模型参数的偏导数,表示损失函数在当前参数点上的变化率。下降:通过沿着梯度的反方向(即损失函
- 我与DeepSeek读《大型网站技术架构》(6)- 上
诺亚凹凸曼
架构
永无止境:网站的伸缩性架构伸缩性定义与实现目标网站的伸缩性指通过增减服务器数量灵活调整服务能力,而无需改变软硬件设计。核心目标是实现线性扩容,即新增服务器数量与系统处理能力成正比。两种基本伸缩设计手段(1)物理分离功能实现伸缩纵向分层:将系统按功能分层(如应用层、数据层),分离到不同服务器集群。例如:将数据库服务与应用程序服务器分离。横向分业务:将不同业务模块(如用户系统、支付系统)部署到独立的服
- 鸿蒙 @ohos.arkui.inspector (布局回调)
淼学派对
harmonyos华为
鸿蒙@ohos.arkui.inspector(布局回调)在鸿蒙开发中,@ohos.arkui.inspector模块提供了一种强大的方式来监听组件的布局和绘制完成事件。这对于实现动态布局调整、自定义动画以及优化性能等场景非常有用。本文将详细介绍如何使用@ohos.arkui.inspector模块实现布局回调,并提供一些实际代码示例。一、功能概述@ohos.arkui.inspector模块提供
- JVM 调优
百里自来卷
jvm
在生产环境中,JVM调优是确保Java应用程序性能和稳定性的重要步骤。调优的目标通常是减少垃圾回收的时间、降低内存使用和提高应用程序的吞吐量。以下是一些常见的JVM调优策略和方法。选择合适的垃圾收集器-XX:+UseG1GC调整堆内存大小,通过调整堆内存的大小,可以控制应用程序的性能设置初始堆大小:-Xms512m设置最大堆大小:-Xmx2048m设置年轻代大小:-Xmn256m一般推荐将初始堆和
- 【3DMAX插件】3DMAX建筑大师插件MasterBuilder使用方法
沐风老师
3DMAX3dmax3dmax插件3dmax建筑大师MasterBuilder
3DMAX建筑大师插件是一款专为3DMAX设计的程序化(参数化)建筑建模工具,其最大特点是能够一键生成建筑模型,极大地提升了工作效率。该插件配备了多种结构控制选项,涵盖阳台、门窗、栏杆、楼顶水塔等附属建筑元素,丰富的参数设置允许用户精细调整每个细节,确保每栋建筑都独具特色。更令人赞叹的是,其随机生成功能能在不设定具体参数的情况下,每次生成外观各异的建筑,为设计工作增添无限创意与可能性。【适用版本】
- Redis_Zset数据类型基本命令
Mudrock__
Redisjavaredis
命令说明zaddkeyscorevalue[scorevalue...]向集合中添加元素,若集合不存在则创建集合,批量添加时scorevalue之间以空格分隔zremkeyvalue[value...]移除集合中的指定元素,批量移除时value之间以空格分隔zrangekeyindex1index2withscores查看集合中下标处于index1-index2的元素(withscores用于将s
- 内网通改修对话框左侧聊天列表宽度
支持未来
开源
使用内网通,由于组织要求,大家名称都加了前缀,最后导致大家名字都显示不全。内网通还无法动态调整这个宽度。可以通过改修内网通安装的文件来改修这个长度1,找到内网通安装目录\Nwt\res\ShiYeLine\layout\ChatDialog.xml2,编辑这个文件2-1.ChatListViewLayoutWidth="150"改宽2-2.SkinLineAlignParentLeft="149"
- 大语言模型微调和大语言模型应用的区别?
AI Echoes
深度学习人工智能机器学习
1.基本概念微调(Fine-tuning)定义:微调是指在预训练大语言模型的基础上,通过在特定领域或任务的数据上进一步训练,从而使模型在该特定任务上表现更优。目的:适应具体的任务需求,比如法律文书写作、医疗问答、金融分析等,使得模型能更好地理解和生成符合领域要求的内容。过程:通常涉及准备领域特定的数据集、设计合适的损失函数、调整超参数(例如学习率、批量大小等),以及选择冻结或解冻部分参数来更新模型
- 大语言模型微调和大语言模型应用的区别?
AI Echoes
人工智能深度学习机器学习
大语言模型微调和大语言模型应用的区别?1.定义与目标微调(Fine-tuning)目标:调整预训练模型(如GPT、LLaMA、PaLM)的参数,使其适应特定任务或领域。核心:通过额外的训练(使用特定数据集)优化模型的性能,提升其在特定场景下的效果。例如:将通用模型微调为法律咨询、医疗诊断或金融分析的专业模型。应用(Application)目标:直接使用预训练或微调后的模型解决实际问题,无需修改模型
- 神经网络完成训练的详细过程
每天五分钟玩转人工智能
神经网络人工智能深度学习pytorch机器学习优化算法包括梯度下降法
神经网络完成训练的详细过程一、神经网络的基本概念神经网络是一种模拟人脑神经系统的计算模型,由大量的神经元(节点)和它们之间的连接(权重)组成。神经元接收输入信号,通过加权求和和激活函数的处理,产生输出信号。这些输出信号又可以作为其他神经元的输入,从而形成一个复杂的网络结构。神经网络的训练过程就是调整这些权重和偏置(每个神经元除了有权重外,还有一个偏置项,用于调整输出的阈值),使得网络的输出能够尽可
- C#实现动态验证码生成器:安全防护与实际应用场景
WangMing_X
C#实现各种功能工具集c#安全开发语言验证码图片
一、核心应用场景用户登录/注册验证:防止恶意程序批量注册表单提交防护:确保关键操作由真人执行API接口限流:抵御自动化脚本攻击敏感操作验证:如支付、信息修改等关键步骤数据防爬机制:保护网站内容不被爬虫抓取二、技术实现方案1.基础架构设计//验证码服务架构+------------------------+|验证码生成模块|←随机字符|(CaptchaGenerator)|+------------
- 基于扩展方法实现C#安全集合操作工具包(含完整源码)
WangMing_X
C#实现各种功能工具集c#安全集合
一、安全集合操作的价值在日常开发中,集合操作引发的NullReferenceException、IndexOutOfRangeException等异常占比高达35%。本工具包通过扩展方法实现以下核心场景的安全防护:安全索引访问防止数据绑定、列表遍历时的越界崩溃空集合防御处理避免foreach空集合导致的逻辑异常批量操作增强简化集合合并、筛选等批量操作深拷贝支持解决引用类型集合修改时的副作用问题二、
- Spring Boot 启动参数终极解析:如何优雅地控制你的应用?
QQ828929QQ
springboot后端java
SpringBoot启动参数终极解析:如何优雅地控制你的应用?在使用SpringBoot开发应用时,我们通常需要根据不同的环境(开发、测试、生产)或特定需求调整启动参数,例如:修改默认端口指定不同的配置文件控制JVM内存大小传递自定义参数那么,SpringBoot提供了哪些方式来配置这些启动参数?今天我们就来详细解析SpringBoot启动参数的各种用法,并附带代码示例,让你可以灵活掌控应用的启动
- Threejs 实现3D 地图(07)3d 地图 完结
多喜乐 长安宁
vuethreejsthreevue.js
ps:本案例主要对省级做了很多操作对于市级还有区级没有进一步完成。大家可以根据自己的需求来调整。目前已经完成了开发但是代码质量不是很好(没时间优化了)后续有空会继续更新,如果你有想做的但是没有实现可以留言给我我会尽量而为。代码又不懂的可以问我我会尽力解答。当然项目中也有我不懂的(借鉴其他博主的思路强行实现)3d地图完结gitee地址:threejs-3d-map:threejs实现3d地图效果包含
- 自动化测试:灵活书写XPATH定位路径
ZJ_star_1220
pythonhtmlcss前端python
进行UI自动化测试过程中XPATH定位是使用最多的定位方法,但是有时候直接复制出来的XPATH路径会比较长,所以就需要掌握一些更高级的方法,通过询问AI,最终得到了以下方法,感觉很有用,所以记录下来一、基础定位语法绝对路径与相对路径绝对路径:以/开头,从根节点逐层定位(如/html/body/div/input),路径长且易受页面结构调整影响相对路径:以//开头,直接定位目标元素(如//input
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓