题解
简单的模拟题,大家懂的
代码
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define FIN freopen("input.txt", "r", stdin)
#define FOUT freopen("output.txt", "w", stdout)
using namespace std;
typedef long long LL;
const int MAXN = 8e2 + 5;
const int INF = 0x3f3f3f3f;
char S[MAXN];
int main(){
while(gets(S)){
int len = strlen(S);
bool t = 0, b_out = false, b_write = false;
for(int i = 0;i < len;i ++){
if(!b_out && S[i] == '@') b_out = true;
else{
if(b_out && isalpha(S[i])){
if(t && !b_write) printf(" ");
b_write = true;
printf("%c", S[i]);
t = true;
}
else{
if(b_out) i --;
b_write = false;
b_out = false;
}
}
}
printf("\n");
}
return 0;
}
题解
为了让自己卖出去的利润最多,可以从后面往前面保存从 i 开始到最后的最大值,然后一一处理就可以了
代码
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define FIN freopen("input.txt", "r", stdin)
#define FOUT freopen("output.txt", "w", stdout)
using namespace std;
typedef long long LL;
const int MAXN = 1e6 + 5;
const int INF = 0x3f3f3f3f;
int A[MAXN], N;
int Mx[MAXN];
int main() {
while(~scanf("%d", &N)) {
for(int i = 0; i < N; i ++) {
scanf("%d", &A[i]);
}
memset(Mx, 0, sizeof(Mx));
for(int i = N - 1; i >= 0; i --) {
Mx[i] = max(Mx[i + 1], A[i]);
}
int sum = 0;
int t = 0;
for(int i = 0;i < N;i ++){
if(A[i] <= Mx[i + 1]){
sum += Mx[i + 1] - A[i];
}
}
printf("%d\n", sum);
}
return 0;
}
题解
推出公式 an=3an−1−an−2 ,所以用矩阵快速幂就可以了,列出变换矩阵
代码
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define FIN freopen("input.txt", "r", stdin)
#define FOUT freopen("output.txt", "w", stdout)
using namespace std;
typedef long long LL;
const int MAXN = 1e6 + 5;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + 7;
typedef long long LL;
typedef vector vec;
typedef vector mat;
LL n;
mat mul(mat &A, mat &B){
mat C(A.size(), vec(B[0].size()));
for(int i = 0;i < A.size();i ++){
for(int k = 0;k < B.size();k ++){
for(int j = 0;j < B[0].size();j ++){
C[i][j] = (C[i][j] + A[i][k] * B[k][j]) % mod;
}
}
}
return C;
}
mat pow(mat A, LL n){
mat B(A.size(), vec(A.size()));
for(int i = 0;i < A.size();i ++) B[i][i] = 1;
while(n){
if(n & 1) B = mul(B, A);
A = mul(A, A);
n >>= 1;
}
return B;
}
int main() {
//FIN;
//FOUT;
while(~scanf("%lld", &n)) {
mat C(3, vec(3));
C[0][0] = 3, C[0][1] = 1, C[0][2] = 0;
C[1][0] = -1, C[1][1] = 0, C[1][2] = 1;
C[2][0] = 0, C[2][1] = 0, C[2][2] = 0;
mat A(3, vec(3));
A[0][0] = 3, A[0][1] = 1, A[0][2] = 1;
A[1][0] = 0, A[1][1] = 0, A[1][2] = 0;
A[2][0] = 0, A[2][1] = 0, A[2][2] = 0;
mat B = pow(C, n);
A = mul(A, B);
printf("%lld\n",(A[0][2] + mod) % mod);
}
return 0;
}