[Offer收割]编程练习赛33

矩阵游戏II

题解

由于是整列整列的处理的,所以相当于处理一个数组,然后取相反数,排个序处理就可以了

代码

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

#define FIN freopen("input.txt", "r", stdin)
#define FOUT freopen("output.txt", "w", stdout)
using namespace std;
typedef long long LL;
const int MAXN = 2e2 + 5;
const int INF = 0x3f3f3f3f;
int S[MAXN];
int N;
int main(){
    while(~scanf("%d", &N)){
        int x, sum = 0;
        memset(S, 0, sizeof(S));

        for(int i = 1;i <= N;i ++){
            for(int j = 1;j <= N;j ++){
                scanf("%d", &x);
                sum += x;
                S[j] += x;
            }
        }
        sort(S + 1, S + N + 1);
        for(int i = 1;i <= N;i += 2){
            if(S[i] > 0 || S[i] < 0 && i + 1 <= N && S[i + 1] > 0 && S[i + 1] >= - S[i]) break;
            if(i + 1 > N) break;
            sum += - 2 * S[i + 1] - 2 * S[i];
        }
        printf("%d\n", sum);
    }
    return 0;
}

是二叉搜索树吗?

题解

先判断是不是树:为一棵树不是深林,然后不能成环
判断是不是二叉树:子节点要小于等于 2
判断是不是排序二叉树:如果子树的所有节点大于当前节点则是有子树,否则为左子树,然后不满足条件就判断出错

代码

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

#define FIN freopen("input.txt", "r", stdin)
#define FOUT freopen("output.txt", "w", stdout)
using namespace std;
typedef long long LL;
const int MAXN = 1e5 + 5;
const int INF = 0x3f3f3f3f;
int N;

struct Node {
    vector<int> info;
} Nsc[MAXN], Nsp[MAXN];

struct NDE {
    int left, right;
} nde[MAXN];
pair<int, int> piia[MAXN];
int par[MAXN];
char path[MAXN << 4];
int pos;
int sz;
bool fg;
int _find(int x) {
    return x == par[x] ? x : par[x] = _find(par[x]);
}

void unit(int a, int b) {
    a = _find(a);
    b = _find(b);
    if(a == b) return;
    par[a] = b;
    sz --;
}

void init() {
    for(int i = 0; i < MAXN; i ++) {
        par[i] = i;
    }
}
// min, max

pair<int, int> DFS1(int p) {
    if(p == -1) return make_pair(p, p);
    pair<int, int> piil = DFS1(nde[p].left);
    pair<int, int> piir = DFS1(nde[p].right);
    if(piil.first != -1 && piir.first != -1 && piil.first > piir.first ||
            piil.first > p && piir.first == -1 ||
            piil.first == -1 && piir.second < p) {
        swap(piil, piir);
        swap(nde[p].left, nde[p].right);
    }

    if(piil.first == -1 && piir.second == -1 ||
            piil.first == -1 && piir.first > p ||
            piil.second < p && piir.first > p ||
            piil.second < p && piir.first == -1) {

    } else {
        fg = true;
    }
    int minv = min((piil.first != -1 ? piil.first : p), (piir.first != -1 ? piir.first : p));
    int maxv = max((piil.second != -1 ? piil.second : p), (piir.second != -1 ? piir.second : p));
    return make_pair(min(p, minv), max(p, maxv));
}

void DFS(int p) {
    if(p == -1) {
        path[pos ++] = '(';
        path[pos ++] = ')';
        return;
    }
    path[pos ++] = '(';
    char buf[10];
    sprintf(buf, "%d", p);
    int len = strlen(buf);
    for(int i = 0; i < len; i ++) {
        path[pos ++] = buf[i];
    }
    DFS(nde[p].left);
    DFS(nde[p].right);
    path[pos ++] = ')';
}

int main() {
    int _, a, b;
    scanf("%d", &_);
    while(_ --) {
        scanf("%d", &N);
        sz = N;
        init();
        for(int i = 0; i < MAXN; i ++) {
            Nsc[i].info.clear();
            Nsp[i].info.clear();
            nde[i].left = nde[i].right = -1;
        }
        for(int i = 0; i < N - 1; i ++) {
            scanf("%d%d", &a, &b);
            Nsc[b].info.push_back(a);
            Nsp[a].info.push_back(b);
            unit(a, b);
        }

        int flag = 0, root = 0;
        if(sz != 1) flag = 1;
        for(int i = 1; i <= N; i ++) {
            if(Nsc[i].info.size() > 1 && flag == 0) {
                flag = 1;
            }
        }
        bool ffg = false;
        for(int i = 1; i <= N; i ++) {
            if(Nsc[i].info.size()  == 0) ffg = true;
        }
        if(!ffg) flag = 1;
        for(int i = 1; i <= N; i ++) {
            if(Nsp[i].info.size() > 2 && flag == 0) {
                flag = 2;
            }
            if(Nsc[i].info.size() == 0) root = i;
            if(Nsp[i].info.size() >= 1)nde[i].left = Nsp[i].info[0];
            if(Nsp[i].info.size() >= 2)nde[i].right = Nsp[i].info[1];
        }
        //printf("-------\n");
        if(flag) {
            printf("ERROR%d\n", flag);
            continue;
        }
        fg = false;
        DFS1(root);
        if(fg && flag == 0) flag = 3;
        if(flag) {
            printf("ERROR%d\n", flag);
            continue;
        }
        pos = 0;
        DFS(root);
        path[pos] = '\0';
        printf("%s\n", path);
    }
    return 0;
}

方格取数

题解

DP处理,第一维为多少步,第二维为第一个人横坐标走了多少步,第三维为第二个人横坐标走了多少步

dp[k][i][j]=max(dp[k1][i1][j],dp[k1][i][j1],dp[k1][i1][j1],dp[k1][i][j])

代码

#include
#include
#include
using namespace std;

const int MAXN = 2e2 + 5;

int a[MAXN << 1][MAXN];
int dp[MAXN << 1][MAXN][MAXN];
const int INF = 0x3f3f3f3f;

int solve(int n) {
    int i, j, k;
    memset(dp, 0, sizeof(dp));
    for(k = 1; k <= 2 * n; k++)
        for(i = 1; i <= k && i <= n; i++)
            for(j = 1; j <= k && j <= n ; j++) {
                int tmp = -INF;
                tmp = max(tmp, dp[k - 1][i - 1][j - 1]);
                tmp = max(tmp, dp[k - 1][i - 1][j]);
                tmp = max(tmp, dp[k - 1][i][j - 1]);
                tmp = max(tmp, dp[k - 1][i][j]);
                if(i == j) dp[k][i][j] = tmp + a[k - i + 1][i];
                else dp[k][i][j] = tmp + a[k - i + 1][i] + a[k - j + 1][j];
            }
    return dp[2 * n][n][n];
}

int main() {
    int n, r, c, v;
    while(scanf("%d", &n) != EOF) {
        memset(a, 0, sizeof(a));
        for(int i = 1; i <= n; i ++) {
            for(int j = 1; j <= n; j ++) {
                scanf("%d", &a[i][j]);
            }
        }
        printf("%d\n", solve(n) + a[1][1] + a[n][n]);
    }
    return 0;
}

你可能感兴趣的:(hihocoder)