点这里
package consistent // import "stathat.com/c/consistent"
import (
"errors"
"hash/crc32"
"sort"
"strconv"
"sync"
)
type uints []uint32
// Len returns the length of the uints array.
func (x uints) Len() int { return len(x) }
// Less returns true if element i is less than element j.
func (x uints) Less(i, j int) bool { return x[i] < x[j] }
// Swap exchanges elements i and j.
func (x uints) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
// ErrEmptyCircle is the error returned when trying to get an element when nothing has been added to hash.
var ErrEmptyCircle = errors.New("empty circle")
// Consistent holds the information about the members of the consistent hash circle.
type Consistent struct {
circle map[uint32]string
members map[string]bool
sortedHashes uints
NumberOfReplicas int
count int64
scratch [64]byte
sync.RWMutex
}
// New creates a new Consistent object with a default setting of 20 replicas for each entry.
//
// To change the number of replicas, set NumberOfReplicas before adding entries.
func New() *Consistent {
c := new(Consistent)
c.NumberOfReplicas = 20
c.circle = make(map[uint32]string)
c.members = make(map[string]bool)
return c
}
// eltKey generates a string key for an element with an index.
func (c *Consistent) eltKey(elt string, idx int) string {
// return elt + "|" + strconv.Itoa(idx)
return strconv.Itoa(idx) + elt
}
// Add inserts a string element in the consistent hash.
func (c *Consistent) Add(elt string) {
c.Lock()
defer c.Unlock()
c.add(elt)
}
// need c.Lock() before calling
func (c *Consistent) add(elt string) {
for i := 0; i < c.NumberOfReplicas; i++ {
c.circle[c.hashKey(c.eltKey(elt, i))] = elt
}
c.members[elt] = true
c.updateSortedHashes()
c.count++
}
// Remove removes an element from the hash.
func (c *Consistent) Remove(elt string) {
c.Lock()
defer c.Unlock()
c.remove(elt)
}
// need c.Lock() before calling
func (c *Consistent) remove(elt string) {
for i := 0; i < c.NumberOfReplicas; i++ {
delete(c.circle, c.hashKey(c.eltKey(elt, i)))
}
delete(c.members, elt)
c.updateSortedHashes()
c.count--
}
// Set sets all the elements in the hash. If there are existing elements not
// present in elts, they will be removed.
func (c *Consistent) Set(elts []string) {
c.Lock()
defer c.Unlock()
for k := range c.members {
found := false
for _, v := range elts {
if k == v {
found = true
break
}
}
if !found {
c.remove(k)
}
}
for _, v := range elts {
_, exists := c.members[v]
if exists {
continue
}
c.add(v)
}
}
func (c *Consistent) Members() []string {
c.RLock()
defer c.RUnlock()
var m []string
for k := range c.members {
m = append(m, k)
}
return m
}
// Get returns an element close to where name hashes to in the circle.
func (c *Consistent) Get(name string) (string, error) {
c.RLock()
defer c.RUnlock()
if len(c.circle) == 0 {
return "", ErrEmptyCircle
}
key := c.hashKey(name)
i := c.search(key)
return c.circle[c.sortedHashes[i]], nil
}
func (c *Consistent) search(key uint32) (i int) {
f := func(x int) bool {
return c.sortedHashes[x] > key
}
i = sort.Search(len(c.sortedHashes), f)
if i >= len(c.sortedHashes) {
i = 0
}
return
}
// GetTwo returns the two closest distinct elements to the name input in the circle.
func (c *Consistent) GetTwo(name string) (string, string, error) {
c.RLock()
defer c.RUnlock()
if len(c.circle) == 0 {
return "", "", ErrEmptyCircle
}
key := c.hashKey(name)
i := c.search(key)
a := c.circle[c.sortedHashes[i]]
if c.count == 1 {
return a, "", nil
}
start := i
var b string
for i = start + 1; i != start; i++ {
if i >= len(c.sortedHashes) {
i = 0
}
b = c.circle[c.sortedHashes[i]]
if b != a {
break
}
}
return a, b, nil
}
// GetN returns the N closest distinct elements to the name input in the circle.
func (c *Consistent) GetN(name string, n int) ([]string, error) {
c.RLock()
defer c.RUnlock()
if len(c.circle) == 0 {
return nil, ErrEmptyCircle
}
if c.count < int64(n) {
n = int(c.count)
}
var (
key = c.hashKey(name)
i = c.search(key)
start = i
res = make([]string, 0, n)
elem = c.circle[c.sortedHashes[i]]
)
res = append(res, elem)
if len(res) == n {
return res, nil
}
for i = start + 1; i != start; i++ {
if i >= len(c.sortedHashes) {
i = 0
}
elem = c.circle[c.sortedHashes[i]]
if !sliceContainsMember(res, elem) {
res = append(res, elem)
}
if len(res) == n {
break
}
}
return res, nil
}
func (c *Consistent) hashKey(key string) uint32 {
if len(key) < 64 {
var scratch [64]byte
copy(scratch[:], key)
return crc32.ChecksumIEEE(scratch[:len(key)])
}
return crc32.ChecksumIEEE([]byte(key))
}
func (c *Consistent) updateSortedHashes() {
hashes := c.sortedHashes[:0]
//reallocate if we're holding on to too much (1/4th)
if cap(c.sortedHashes)/(c.NumberOfReplicas*4) > len(c.circle) {
hashes = nil
}
for k := range c.circle {
hashes = append(hashes, k)
}
sort.Sort(hashes)
c.sortedHashes = hashes
}
func sliceContainsMember(set []string, member string) bool {
for _, m := range set {
if m == member {
return true
}
}
return false
}
下载源码
package util
import (
"fmt"
"log"
"stathat.com/c/consistent"
"testing"
)
func printStore(c *consistent.Consistent, num int, servers *map[string]*Server) {
for k, _ := range *servers {
(*servers)[k].Store = (*servers)[k].Store[0:0]
}
for i := 0; i < num; i++ {
server, err := c.Get(fmt.Sprintf("%d", i))
if err != nil {
log.Fatal(err)
}
(*servers)[server].Store = append((*servers)[server].Store, i)
}
for k, v := range *servers {
fmt.Println(k, " store:", v.Store)
}
}
type Server struct {
Name string
Store []int
}
func TestConsistent(t *testing.T) {
c := consistent.New()
servers := make(map[string]*Server)
servers["storeA"] = &Server{"storeA", make([]int, 0)}
servers["storeB"] = &Server{"storeB", make([]int, 0)}
servers["storeC"] = &Server{"storeC", make([]int, 0)}
for _, server := range servers {
c.Add(server.Name)
}
fmt.Println("init state")
printStore(c, 20, &servers)
servers["storeD"] = &Server{"storeD", make([]int, 0)}
c.Add("storeD")
fmt.Println("\nafter add storeD")
printStore(c, 20, &servers)
delete(servers, "storeD")
c.Remove("storeD")
fmt.Println("\nafter remove storeD")
printStore(c, 20, &servers)
}
[root@localhost util]# go test
init state
storeA store: [1 2 5 7 8 9 11 13 16 17 19]
storeB store: [3 4 6 14 18]
storeC store: [0 10 12 15]
after add storeD
storeA store: [2 8 9 16 17]
storeB store: [3 4 6 14 18]
storeC store: [0 10 15]
storeD store: [1 5 7 11 12 13 19]
after remove storeD
storeA store: [1 2 5 7 8 9 11 13 16 17 19]
storeB store: [3 4 6 14 18]
storeC store: [0 10 12 15]
http://www.martinbroadhurst.com/tag/depth-first-search
http://www.cnblogs.com/haippy/archive/2011/12/10/2282943.html