C++实现红黑树建立,销毁,查找,插入和删除

/*
* RBT.h
*
*  Created on: Nov 30, 2015
*      Author: chris
*/

#pragma once

#include

enum NodeColor{RED, BLACK};

typedef int KeyType;

struct RBTNode{
	RBTNode *right, *left, *p;
	NodeColor color;
	KeyType key;

	RBTNode() : right(NULL), left(NULL), 
		p(NULL), color(RED),key(0) {}
};

struct RBTree{
	RBTNode * root, * nil;
	RBTree() {}
};

bool RBTreeCreate(RBTree & T);
void RBTreeDestroy(RBTree & T);

bool RBTreeSearchKey(RBTree & T, KeyType key, RBTNode*& p);
bool RBTreeInsert(RBTree & T, KeyType key);
bool RBTreeDelete(RBTree & T, KeyType key);

void RBTreeWalkThrough(RBTree & T);




/*
* RBT.cpp
*
*  Created on: Nov 30, 2015
*      Author: chris
*/

#include "RBT.h"
#include 
using namespace std;

bool RBTreeCreate(RBTree & T)
{
	T.nil = new RBTNode();
	if (!T.nil) return false;
	T.nil->color = BLACK;
	T.nil->left = T.nil->right = T.nil->p = T.nil;

	T.root = T.nil;
	return true;
}

void RBTreeClearSubTree(RBTree & T, RBTNode* & sub)
{
	if (sub == T.nil) return;
	RBTreeClearSubTree(T, sub->left);
	RBTreeClearSubTree(T, sub->right);
	delete sub;
	sub = T.nil;
}

void RBTreeDestroy(RBTree & T)
{
	RBTreeClearSubTree(T, T.root);
	delete T.nil;
	T.nil = T.root = NULL;
}

bool RBTreeSearchKey(RBTree & T, KeyType key, RBTNode*& p)
{
	// search key in T, if found p => key, if not found, p => ins pos
	p = T.nil;
	RBTNode * x = T.root;
	while (x != T.nil) {
		p = x;
		if (key < x->key)
			x = x->left;
		else if (key > x->key)
			x = x->right;
		else break;
	} // endw.
	if (x != T.nil) // found
		return true;
	else			// not found
		return false;
}

void Left_Rotate(RBTree & T, RBTNode * x)
{
	RBTNode * y = x->right;		// set y
	// turn y's left subtree into x's right subtree.
	x->right = y->left;			
	if (y->left != T.nil)
		y->left->p = x;
	// y take the place of x.
	y->p = x->p;
	if (x->p == T.nil)
		T.root = y;
	else if (x == x->p->left)
		x->p->left = y;
	else 
		x->p->right = y;
	y->left = x;
	x->p = y;
} // end rot left

void Right_Rotate(RBTree & T, RBTNode * x)
{
	RBTNode * y = x->left;	// set y
	// turn y's right subtree into x's left subtree.
	x->left = y->right;
	if (y->right != T.nil)
		y->right->p = x;
	// y take the place of x
	y->p = x->p;
	if (x->p == T.nil)
		T.root = y;
	else if (x == x->p->left)
		x->p->left = y;
	else
		x->p->right = y;
	y->right = x;
	x->p = y;
} // end rot right

void RB_Insert_FixUp(RBTree & T, RBTNode * z)
{
	RBTNode * y = T.nil;
	while (z->p->color == RED) {
		if (z->p == z->p->p->left) {
			y = z->p->p->right;	// uncle
			if (y->color == RED) {
				// uncle is red, repaint and continue.
				z->p->color = BLACK;
				y->color = BLACK;
				z->p->p->color = RED;
				z = z->p->p;
			}
			else {
				// uncle is black, rotate and break.
				if (z == z->p->right) { // LR case
					z = z->p;
					Left_Rotate(T, z);
				}
				// LL case
				z->p->color = BLACK;
				z->p->p->color = RED;
				Right_Rotate(T, z->p->p);
			} 
		} // end if z.p == z.p.p.left
		else {
			y = z->p->p->left; // uncle
			if (y->color == RED) {
				// uncle is red, repaint and continue.
				z->p->color = BLACK;
				y->color = BLACK;
				z->p->p->color = RED;
				z = z->p->p;
			}
			else {
				// uncle is black, rotate and break.
				if (z == z->p->left) {
					// RL case
					z = z->p;
					Right_Rotate(T, z);
				}
				// RR case
				z->p->color = BLACK;
				z->p->p->color = RED;
				Left_Rotate(T, z->p->p);
			}
		} // end if z.p == z.p.p.right
	} // endw z.p red
	T.root->color = BLACK;
}

bool RBTreeInsert(RBTree & T, KeyType key)
{
	RBTNode * y;
	if (RBTreeSearchKey(T, key, y))
		return false;
	
	// load
	RBTNode * z = new RBTNode();
	if (!z) return false;
	z->key = key;
	
	// insert
	z->p = y;
	if (y == T.nil)
		T.root = z;
	else if (z->key < y->key)
		y->left = z;
	else
		y->right = z;
	z->left = T.nil;
	z->right = T.nil;
	z->color = RED;
	
	RB_Insert_FixUp(T, z);
	return true;
}

void RB_Transplant(RBTree & T, RBTNode* u, RBTNode* v)
{
	if (u->p == T.nil)
		T.root = v;
	else if (u == u->p->left)
		u->p->left = v;
	else
		u->p->right = v;
	v->p = u->p;
}

RBTNode * RB_Tree_Minimum(RBTree & T, RBTNode * z)
{
	RBTNode * y = z;
	while (z != T.nil) {
		y = z;
		z = z->left;
	} // endw
	return y;
}

void RB_Delete_FixUp(RBTree & T, RBTNode * x)
{
	RBTNode * w = T.nil;
	while (x != T.root && x->color == BLACK) {
		if (x == x->p->left) {
			w = x->p->right;
			// case 1: w is red, x.p is black
			if (w->color == RED) {
				w->color = BLACK;
				x->p->color = RED;
				Left_Rotate(T, x->p);
				w = x->p->right;
			}
			// case 2: w is black, with black left and right siblings
			if (w->left->color == BLACK && w->right->color == BLACK) {
				w->color = RED;
				x = x->p;
			}
			else {
				// case 3: w is black, with red left. 
				if (w->right->color == BLACK) {
					w->left->color = BLACK;
					w->color = RED;
					Right_Rotate(T, w);
					w = x->p->right;
				}
				// case 4:  w is black, with red right or both.(RR case)
				w->color = x->p->color;
				x->p->color = BLACK;
				w->right->color = BLACK;
				Left_Rotate(T, x->p);
				x = T.root;
			}
		} // end if x == x.p.left
		else {
			w = x->p->left;
			// case 1: w is red
			if (w->color == RED) {
				w->color = BLACK;
				x->p->color = RED;
				Right_Rotate(T, x->p);
				w = x->p->left;
			}
			// case 2: w is black, with black left and right
			if (w->right->color == BLACK && w->left->color == BLACK) {
				w->color = RED;
				x = x->p;
			}
			else {
				// case 3: w is black, with red right
				if (w->left->color == BLACK) {
					w->right->color = BLACK;
					w->color = RED;
					Left_Rotate(T, w);
					w = x->p->left;
				}
				// case 4: w is black, with red left or both(LL case)
				w->color = x->p->color;
				x->p->color = BLACK;
				w->left->color = BLACK;
				Right_Rotate(T, x->p);
				x = T.root;
			} 
		} // end if x == x.p.right
	} // endw
	x->color = BLACK;
}

bool RBTreeDelete(RBTree & T, KeyType key)
{
	RBTNode *x, *y, *z;
	if (!RBTreeSearchKey(T, key, z))
		return false;

	y = z;	// node to be deleted.
	NodeColor y_original_color = y->color;
	// z has one or no child.
	if (z->left == T.nil) {
		x = z->right;
		RB_Transplant(T, z, z->right);
	}
	else if (z->right == T.nil) {
		x = z->left;
		RB_Transplant(T, z, z->left);
	}
	else{
		// z has two children.
		y = RB_Tree_Minimum(T, z->right); // successor of z
		y_original_color = y->color;
		
		// y move into z's position.
		// x is the only branch(right) from original y
		x = y->right;
		// splice right branch
		if (y->p == z)
			x->p = y;		// important
		else {
			RB_Transplant(T, y, y->right);
			y->right = z->right;
			y->right->p = y;
		}
		// splice left branch
		RB_Transplant(T, z, y);
		y->left = z->left;
		y->left->p = y;
		y->color = z->color;
	} // endif z has two children
	
	delete y;
	// treat x as a newly inserted branch,
	// and check property violation.
	if (y_original_color == BLACK)
		// black height deficiency between root and x
		RB_Delete_FixUp(T, x);
}

void _RB_WalkThrough(RBTree & T, RBTNode* sub)
{
	static int depth = 0;
	if (sub == T.nil) return;
	++depth;

	bool running = true;
	while (running) {
		cout << "Now at: " << (void*)sub << "; depth: " << depth << endl;
		cout << "Cur Color: " << sub->color << "; Cur Key: " << sub->key << endl;
		cout << "Parent: " << (void*)sub->p << "; Left: " << (void*)sub->left << "; Right: " << (void*)sub->right << endl;
		
		// oper
		int ans = 0;
		do{
			cout << "1: to left; 2: to right; 3: back up" << endl;
			cin >> ans;
			if (ans >= 1 && ans <= 3)
				break;
		} while (true);

		switch (ans)
		{
		case 1:
			if (sub->left != T.nil)
				_RB_WalkThrough(T, sub->left);
			else
				cout << "Failed." << endl;
			break;
		case 2:
			if (sub->right != T.nil)
				_RB_WalkThrough(T, sub->right);
			else
				cout << "Failed." << endl;
			break;
		case 3:
			running = false;
			break;
		} // endsw
	} // endw

	--depth;
}

void RBTreeWalkThrough(RBTree & T)
{
	_RB_WalkThrough(T, T.root);
}


 





/*
 * Main.cpp
 *
 *  Created on: Oct 31, 2015
 *      Author: chris
 */

#include
#include "RBT.h"

using namespace std;

int main(void)
{
	RBTree T;
	if (!RBTreeCreate(T)) return 0;

	RBTreeInsert(T, 11);
	RBTreeInsert(T, 2);
	RBTreeInsert(T, 14);
	RBTreeInsert(T, 1);
	RBTreeInsert(T, 7);
	RBTreeInsert(T, 15);
	RBTreeInsert(T, 5);
	RBTreeInsert(T, 8);
	RBTreeInsert(T, 4);

	RBTreeWalkThrough(T);

	RBTreeDestroy(T);
	system("pause");
	return 0;
}



你可能感兴趣的:(数据结构,搜索)