Given a 2D board containing 'X'
and 'O'
(the letter O), capture all regions surrounded by 'X'
.
A region is captured by flipping all 'O'
s into 'X'
s in that surrounded region.
For example,
X X X X X O O X X X O X X O X X
After running your function, the board should be:
X X X X X X X X X X X X X O X X
1.DFS
class Solution {
public:
//1.用深度搜索的方法
void mark(vector>& board, int i, int j, int m, int n){
if(i > 1 && board[i-1][j] == 'O'){
board[i-1][j] = '1';
mark(board, i-1, j, m, n);
}
if(i+1 < m && board[i+1][j] == 'O'){
board[i+1][j] = '1';
mark(board, i+1, j, m, n);
}
if(j > 1 && board[i][j-1] == 'O'){
board[i][j-1] = '1';
mark(board, i, j-1, m, n);
}
if(j+1 < n && board[i][j+1] == 'O'){
board[i][j+1] = '1';
mark(board, i, j+1, m, n);
}
}
void solve(vector>& board) {
int m = board.size();
if(m == 0) return;
int n = board[0].size();
if(n == 0) return;
for(int i = 0; i < n; i++){ //对头尾两行进行边缘‘O’的查找
if(board[0][i] == 'O'){
board[0][i] = '1';
mark(board, 0, i, m, n);
}
if(m > 1){
if(board[m-1][i] == 'O'){
board[m-1][i] = '1';
mark(board, m-1, i, m, n);
}
}
}
for(int j = 0; j < m; j++){//对头尾两列进行边缘‘O’的查找
if(board[j][0] == 'O'){
board[j][0] = '1';
mark(board, j, 0, m, n);
}
if(n > 1){
if(board[j][n-1] == 'O'){
board[j][n-1] = '1';
mark(board, j, n-1, m, n);
}
}
}
for(int i = 0; i < m; i++){
for(int j = 0; j < n; j++){
if(board[i][j] == 'O')
board[i][j] = 'X';
}
}
for(int i = 0; i < m; i++){
for(int j = 0; j < n; j++){
if(board[i][j] == '1')
board[i][j] = 'O';
}
}
}
};
2.BFS
class Solution {
public:
void bfs(vector>& board, int x, int y, int m, int n){
queue>q;
q.push(make_pair(x,y));
board[x][y] = '+';
while(!q.empty()){
paircur = q.front();
q.pop();
pairpos[4] = {{cur.first-1, cur.second}, {cur.first+1, cur.second},{cur.first, cur.second+1}, {cur.first, cur.second-1}};
for(int i = 0;i < 4; i++){
int xx = pos[i].first;
int yy = pos[i].second;
if(xx >= 0 && xx < m && yy >= 0 && yy < n && board[xx][yy] == 'O'){
q.push(pos[i]);
board[xx][yy] = '+';
}
}
}
}
void solve(vector>& board) {
//BFS
int m = board.size();
if(m == 0) return;
int n = board[0].size();
if(n == 0) return;
for(int i = 0; i < n; i++){
if(board[0][i] == 'O')
bfs(board, 0, i, m, n);
if(board[m-1][i] == 'O')
bfs(board, m-1, i, m, n);
}
for(int i = 0; i < m; i++){
if(board[i][0] == 'O')
bfs(board, i, 0, m, n);
if(board[i][n-1] == 'O')
bfs(board, i, n-1, m, n);
}
for(int i = 0; i < m; i++){
for(int j = 0; j < n; j++){
if(board[i][j] == 'O')
board[i][j] = 'X';
}
}
for(int i = 0; i < m; i++){
for(int j = 0; j < n; j++){
if(board[i][j] == '+')
board[i][j] = 'O';
}
}
}
};
别人的思想;
并查集常用来解决连通性的问题,即将一个图中连通的部分划分出来。当我们判断图中两个点之间是否存在路径时,就可以根据判断他们是否在一个连通区域。
当数据较多时,并查集比BFS和DFS算法适用。
但是,并查集的缺陷就是不能够求出连通的两个点之间的路径,但是DFS算法或者BFS算法适用。
并查集的思想就是,同一个连通区域内的所有点的根节点是同一个。将每个点映射成一个数字。先假设每个点的根节点就是他们自己,然后我们以此输入连通的点对,然后将其中一个点的根节点赋成另一个节点的根节点,这样这两个点所在连通区域又相互连通了。
并查集的主要操作有:
当然,并查集还有较多优化,比如怎么避免并查集的树退化成一条链。合并的时候,应该尽量让小树根节点连在大树根节点上,尽量使得整个树扁平。
代码:class Solution {
//union find主要找根节点,union 主要对两两(右下)进行合并,同时若一个是边缘的,则使另一个也为边缘
private:
vectorroot;
vectorisedge;
public:
void unions(int x, int y){
int root_x = find(x);
int root_y = find(y);
if(root_x == root_y) return;
root[root_x] = root_y; //将root_x 作为root_y的子节点
if(isedge[root_x]) isedge[root_y] = true;
}
int find(int x){
while(root[x] != x){
root[x] = root[root[x]];
x = root[x];
}
return x;
}
void solve(vector>& board) {
if(board.size() == 0 || board[0].size() == 0) return;
int height = board.size(), width = board[0].size();
int n = height* width;
root = vector(n, 0);
isedge = vector(n, false);
//1. 初始化root和isedge数组
for(int i = 0; i < n; i++){
int x = i / width, y = i % width;
root[i] = i;
if((board[x][y] == 'O') && ((x == 0) || (x == height-1) || (y == 0) || (y == width-1))) isedge[i] = true;
}
//2.union
for(int i = 0; i < n; i++){
int x = i/width, y = i % width;
if((x < height -1) && (board[x][y] == board[x+1][y])) unions(i, i + width); //跟下面的进行合并
if((y < width -1) && (board[x][y] == board[x][y+1])) unions(i, i+1);
}
//3.find
for(int i = 0; i < n; i++){
int x = i/width, y = i%width;
if(board[x][y] == 'O' && !isedge[find(i)]) board[x][y] = 'X';
}
}
};