常用损失函数

自己随便乱粘的,自用

1、logloss对数损失函数

对数损失, 即对数似然损失(Log-likelihood Loss), 也称逻辑斯谛回归损失(Logistic Loss)或交叉熵损失(cross-entropy Loss), 是在概率估计上定义的.它常用于(multi-nominal, 多项)逻辑斯谛回归和神经网络,以及一些期望极大算法的变体. 可用于评估分类器的概率输出.

  对数损失通过惩罚错误的分类,实现对分类器的准确度(Accuracy)的量化. 最小化对数损失基本等价于最大化分类器的准确度.为了计算对数损失, 分类器必须提供对输入的所属的每个类别的概率值, 不只是最可能的类别. 对数损失函数的计算公式如下: 

  其中, Y 为输出变量, X为输入变量, L 为损失函数. N为输入样本量, M为可能的类别数, yij 是一个二值指标, 表示类别 j 是否是输入实例 xi 的真实类别. pij 为模型或分类器预测输入实例 xi 属于类别 j 的概率.

  如果只有两类 {0, 1}, 则对数损失函数的公式简化为

  这时, yi 为输入实例 xi 的真实类别, pi 为预测输入实例 xi 属于类别 1 的概率. 对所有样本的对数损失表示对每个样本的对数损失的平均值, 对于完美的分类器, 对数损失为 0 .

 

2、平方损失函数(最小二乘法, Ordinary Least Squares )

平方损失函数较为容易理解,它直接测量机器学习模型的输出与实际结果之间的距离。这里可以定义机器学习模型的输出为yi,实际的结果为ti

,那么平方损失函数可以被定义为:

3、指数损失函数(Adaboost)

 

4、Hinge损失函数(SVM)

Hinge loss用于最大间隔(maximum-margin)分类,其中最有代表性的就是支持向量机SVM。

  Hinge函数的标准形式:

 

  

(与上面统一的形式:

  其中,t为目标值(-1或+1),y是分类器输出的预测值,并不直接是类标签。其含义为,当t和y的符号相同时(表示y预测正确)并且|y|≥1时,hinge loss为0;当t和y的符号相反时,hinge loss随着y的增大线性增大。

 

5、0-1损失函数和绝对值损失函数

0-1损失是指,预测值和目标值不相等为1,否则为0:

  感知机就是用的这种损失函数。但是由于相等这个条件太过严格,因此我们可以放宽条件,即满足时认为相等。

 

绝对值损失函数:

 

你可能感兴趣的:(深度学习)