MapReduce执行流程详解

文章转载自:https://www.cnblogs.com/sunfie/p/4651609.html
一、MapReduce执行过程

MapReduce运行时,首先通过Map读取HDFS中的数据,然后经过拆分,将每个文件中的每行数据分拆成键值对,最后输出作为Reduce的输入,大体执行流程如下图所示:
MapReduce执行流程详解_第1张图片
整个流程图具体来说:每个Mapper任务是一个java进程,它会读取HDFS中的文件,解析成很多的键值对,经过我们覆盖的map方法处理后,转换为很多的键值对再输出,整个Mapper任务的处理过程又可以分为以下几个阶段,如图所示。

MapReduce执行流程详解_第2张图片
在上图中,把Mapper任务的运行过程分为六个阶段。

  • 第一阶段是把输入文件按照一定的标准分片 (InputSplit),每个输入片的大小是固定的。默认情况下,输入片(InputSplit)的大小与数据块(Block)的大小是相同的。如果数据块(Block)的大小是默认值64MB,输入文件有两个,一个是32MB,一个是72MB。那么小的文件是一个输入片,大文件会分为两个数据块,那么是两个输入片,一共产生三个输入片。每一个输入片由一个Mapper进程处理,这里的三个输入片,会有三个Mapper进程处理。

  • 第二阶段是对输入片中的记录按照一定的规则解析成键值对,有个默认规则是把每一行文本内容解析成键值对,这里的“键”是每一行的起始位置(单位是字节),“值”是本行的文本内容。

  • 第三阶段是调用Mapper类中的map方法,在第二阶段中解析出来的每一个键值对,调用一次map方法,如果有1000个键值对,就会调用1000次map方法,每一次调用map方法会输出零个或者多个键值对。

  • 第四阶段是按照一定的规则对第三阶段输出的键值对进行分区,分区是基于键进行的,比如我们的键表示省份(如北京、上海、山东等),那么就可以按照不同省份进行分区,同一个省份的键值对划分到一个区中。默认情况下只有一个区,分区的数量就是Reducer任务运行的数量,因此默认只有一个Reducer任务。

  • 第五阶段是对每个分区中的键值对进行排序。首先,按照键进行排序,对于键相同的键值对,按照值进行排序。比如三个键值 对<2,2>、<1,3>、<2,1>,键和值分别是整数。那么排序后的结果 是<1,3>、<2,1>、<2,2>。如果有第六阶段,那么进入第六阶段;如果没有,直接输出到本地的linux 文件中。

  • 第六阶段是对数据进行归约处理,也就是reduce处理,通常情况下的Comber过程,键相等的键值对会调用一次reduce方法,经过这一阶段,数据量会减少,归约后的数据输出到本地的linxu文件中。本阶段默认是没有的,需要用户自己增加这一阶段的代码。

二、Reducer任务的执行过程详解

每个Reducer任务是一个java进程。Reducer任务接收Mapper任务的输出,归约处理后写入到HDFS中,可以分为如下图所示的几个阶段。

1、第一阶段是Reducer任务会主动从Mapper任务复制其输出的键值对,Mapper任务可能会有很多,因此Reducer会复制多个Mapper的输出。

2、第二阶段是把复制到Reducer本地数据,全部进行合并,即把分散的数据合并成一个大的数据,再对合并后的数据排序。

3、第三阶段是对排序后的键值对调用reduce方法,键相等的键值对调用一次reduce方法,每次调用会产生零个或者多个键值对,最后把这些输出的键值对写入到HDFS文件中。

三、键值对的编号

在对Mapper任务、Reducer任务的分析过程中,会看到很多阶段都出现了键值对,这里对键值对进行编号,方便理解键值对的变化情况,如下图所示。

MapReduce执行流程详解_第3张图片
在上图中,对于Mapper任务输入的键值对,定义为key1和value1,在map方法中处理后,输出的键值对,定义为key2和value2,reduce方法接收key2和value2处理后,输出key3和value3。在下文讨论键值对时,可能把key1和value1简写 为,key2和value2简写为,key3和value3简写为

你可能感兴趣的:(hadoop)