1.安装
paddle飞桨安装步骤,安装问题,安装说明,使用教程,戳链接:https://www.paddlepaddle.org.cn/install/quick
快速安装方法:
PaddlePaddle支持使用pip快速安装, 执行下面的命令完成CPU版本的快速安装:
pip install -U paddlepaddle
如需安装GPU版本的PaddlePaddle,执行下面的命令完成GPU版本的快速安装:
pip install -U paddlepaddle-gpu
2.验证
在命令框里输入:
import paddle.fluid
paddle.fluid.install_check.run_check()
使用飞桨构建波士顿房价预测模型:
#加载相关类库
import paddle
import paddle.fluid as fluid # 飞桨的主库,目前大部分的实用函数均在paddle.fluid包内
import paddle.fluid.dygraph as dygraph # 动态图的类库
from paddle.fluid.dygraph import Linear # 神经网络的全连接层函数,即包含所有输入权重相加和激活函数的基本神经元结构.
import numpy as np
import os
import random
def load_data():
# 从文件导入数据
datafile = './work/housing.data'
data = np.fromfile(datafile, sep=' ')
# 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数
feature_names = [ 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', \
'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV' ]
feature_num = len(feature_names)
# 将原始数据进行Reshape,变成[N, 14]这样的形状
data = data.reshape([data.shape[0] // feature_num, feature_num])
# 将原数据集拆分成训练集和测试集
# 这里使用80%的数据做训练,20%的数据做测试
# 测试集和训练集必须是没有交集的
ratio = 0.8
offset = int(data.shape[0] * ratio)
training_data = data[:offset]
# 计算train数据集的最大值,最小值,平均值
maximums, minimums, avgs = training_data.max(axis=0), training_data.min(axis=0), \
training_data.sum(axis=0) / training_data.shape[0]
# 记录数据的归一化参数,在预测时对数据做归一化
global max_values
global min_values
global avg_values
max_values = maximums
min_values = minimums
avg_values = avgs
# 对数据进行归一化处理
for i in range(feature_num):
#print(maximums[i], minimums[i], avgs[i])
data[:, i] = (data[:, i] - avgs[i]) / (maximums[i] - minimums[i])
# 训练集和测试集的划分比例
#ratio = 0.8
#offset = int(data.shape[0] * ratio)
training_data = data[:offset]
test_data = data[offset:]
return training_data, test_data
定义init函数:在类的初始化函数中声明每一层网络的实现函数。
定义forward函数:构建神经网络结构,实现前向计算过程,并返回预测结果,在本任务中返回的是房价预测结果。
class Regressor(fluid.dygraph.Layer):
def __init__(self):
super(Regressor, self).__init__()
# 定义一层全连接层,输出维度是1,激活函数为None,即不使用激活函数
self.fc = Linear(input_dim=13, output_dim=1, act=None)
# 网络的前向计算函数
def forward(self, inputs):
x = self.fc(inputs)
return x
# 定义飞桨动态图的工作环境
with fluid.dygraph.guard():
# 声明定义好的线性回归模型
model = Regressor()
# 开启模型训练模式
model.train()
# 加载数据
training_data, test_data = load_data()
# 定义优化算法,这里使用随机梯度下降-SGD
# 学习率设置为0.01
opt = fluid.optimizer.SGD(learning_rate=0.01, parameter_list=model.parameters())
with dygraph.guard(fluid.CPUPlace()):
EPOCH_NUM = 10 # 设置外层循环次数
BATCH_SIZE = 10 # 设置batch大小
# 定义外层循环
for epoch_id in range(EPOCH_NUM):
# 在每轮迭代开始之前,将训练数据的顺序随机的打乱
np.random.shuffle(training_data)
# 将训练数据进行拆分,每个batch包含10条数据
mini_batches = [training_data[k:k+BATCH_SIZE] for k in range(0, len(training_data), BATCH_SIZE)]
# 定义内层循环
for iter_id, mini_batch in enumerate(mini_batches):
x = np.array(mini_batch[:, :-1]).astype('float32') # 获得当前批次训练数据
y = np.array(mini_batch[:, -1:]).astype('float32') # 获得当前批次训练标签(真实房价)
# 将numpy数据转为飞桨动态图variable形式
house_features = dygraph.to_variable(x)
prices = dygraph.to_variable(y)
# 前向计算
predicts = model(house_features)
# 计算损失
loss = fluid.layers.square_error_cost(predicts, label=prices)
avg_loss = fluid.layers.mean(loss)
if iter_id%20==0:
print("epoch: {}, iter: {}, loss is: {}".format(epoch_id, iter_id, avg_loss.numpy()))
# 反向传播
avg_loss.backward()
# 最小化loss,更新参数
opt.minimize(avg_loss)
# 清除梯度
model.clear_gradients()
# 保存模型
fluid.save_dygraph(model.state_dict(), 'LR_model')
5.保存并测试模型
with fluid.dygraph.guard():
# 保存模型参数,文件名为LR_model
fluid.save_dygraph(model.state_dict(), 'LR_model')
print("模型保存成功,模型参数保存在LR_model中")
def load_one_example(data_dir):
f = open(data_dir, 'r')
datas = f.readlines()
# 选择倒数第10条数据用于测试
tmp = datas[-10]
tmp = tmp.strip().split()
one_data = [float(v) for v in tmp]
# 对数据进行归一化处理
for i in range(len(one_data)-1):
one_data[i] = (one_data[i] - avg_values[i]) / (max_values[i] - min_values[i])
data = np.reshape(np.array(one_data[:-1]), [1, -1]).astype(np.float32)
label = one_data[-1]
return data, label
with dygraph.guard():
# 参数为保存模型参数的文件地址
model_dict, _ = fluid.load_dygraph('LR_model')
model.load_dict(model_dict)
model.eval()
# 参数为数据集的文件地址
test_data, label = load_one_example('./work/housing.data')
# 将数据转为动态图的variable格式
test_data = dygraph.to_variable(test_data)
results = model(test_data)
# 对结果做反归一化处理
results = results * (max_values[-1] - min_values[-1]) + avg_values[-1]
print("Inference result is {}, the corresponding label is {}".format(results.numpy(), label))