图像处理-仿射变换 AffineTransform

转自:http://fairywangyutang.blog.sohu.com/146834554.html

 

AffineTransform类描述了一种二维仿射变换的功能,它是一种二维坐标到二维坐标之间的线性变换,保持二维图形的“平直性”(译注:straightness,即变换后直线还是直线不会打弯,圆弧还是圆弧)和“平行性”(译注:parallelness,其实是指保二维图形间的相对位置关系不变,平行线还是平行线,相交直线的交角不变。大二学过的复变,“保形变换/保角变换”都还记得吧,数学就是王道啊!)。仿射变换可以通过一系列的原子变换的复合来实现,包括:平移(Translation)、缩放(Scale)、翻转(Flip)、旋转(Rotation)和剪切(Shear)。

此类变换可以用一个3×3的矩阵来表示,其最后一行为(0, 0, 1)。该变换矩阵将原坐标(x, y)变换为新坐标(x', y'),这里原坐标和新坐标皆视为最末一行为(1)的三维列向量,原列向量左乘变换矩阵得到新的列向量:

[x']    [m00 m01 m02] [x]    [m00*x+m01*y+m02]
[y'] = [m10 m11 m12] [y] = [m10*x+m11*y+m12]
[1 ]   [ 0      0      1   ] [1]    [              1             ]


几种典型的仿射变换:

public static AffineTransform getTranslateInstance(double tx, double ty)

平移变换,将每一点移动到(x+tx, y+ty),变换矩阵为:
[   1    0    tx ]
[   0    1    ty ]
[   0    0    1   ]
(译注:平移变换是一种“刚体变换”,rigid-body transformation,中学学过的物理,都知道啥叫“刚体”吧,就是不会产生形变的理想物体,平移当然不会改变二维图形的形状。同理,下面的“旋转变换”也是刚体变换,而“缩放”、“错切”都是会改变图形形状的。)

public static AffineTransform getScaleInstance(double sx, double sy)

缩放变换,将每一点的横坐标放大(缩小)至sx倍,纵坐标放大(缩小)至sy倍,变换矩阵为:
[   sx   0    0   ]
[   0    sy   0   ]
[   0    0    1   ]

 

public static AffineTransform getShearInstance(double shx, double shy)

剪切变换,变换矩阵为:
[   1   shx   0   ]
[ shy   1    0   ]
[   0     0    1   ]
相当于一个横向剪切与一个纵向剪切的复合
[   1      0    0   ][   1   shx   0   ]
[ shy   1    0   ][   0     1     0   ]
[   0      0    1   ][   0    0     1   ]
(译注:“剪切变换”又称“错切变换”,指的是类似于四边形不稳定性那种性质,街边小商店那种铁拉门都见过吧?想象一下上面铁条构成的菱形拉动的过程,那就是“错切”的过程。)

public static AffineTransform getRotateInstance(double theta)

旋转变换,目标图形围绕原点顺时针旋转theta弧度,变换矩阵为:
[   cos(theta)    -sin(theta)    0   ]
[   sin(theta)     cos(theta)    0   ]
[       0                0             1   ]

 

public static AffineTransform getRotateInstance(double theta, double x, double y)

旋转变换,目标图形以(x, y)为轴心顺时针旋转theta弧度,变换矩阵为:
[   cos(theta)    -sin(theta)    x-x*cos+y*sin]
[   sin(theta)     cos(theta)    y-x*sin-y*cos ]
[       0                 0                  1             ]
相当于两次平移变换与一次原点旋转变换的复合:
[1 0 -x][cos(theta) -sin(theta) 0][1 0 x]
[0 1 -y][sin(theta)   cos(theta) 0][0 1 y]
[0 0 1 ][     0                0        1 ][0 0 1]

你可能感兴趣的:(Image,Processing)