数据的标准化是将数据按比例缩放,使之落入一个小的特定区间,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。
1)加快梯度下降求最优解的速度
如果两个特征的区间相差非常大,其所形成的等高线非常尖,很有可能走“之字型”路线(垂直等高线走),从而导致需要迭代很多次才能收敛。
2)有可能提高精度
一些分类器需要计算样本之间的距离,如果一个特征值域范围非常大,那么距离计算就主要取决于这个特征,从而与实际情况相悖(比如这时实际情况是值域范围小的特征更重要)。
1)线性归一化
这种归一化比较适用在数值比较集中的情况,缺陷就是如果max和min不稳定,很容易使得归一化结果不稳定,使得后续的效果不稳定,实际使用中可以用经验常量来代替max和min。
2)标准差标准化
经过处理的数据符合标准正态分布,即均值为0,标准差为1。
3)非线性归一化
经常用在数据分化较大的场景,有些数值大,有些很小。通过一些数学函数,将原始值进行映射。该方法包括log、指数、反正切等。需要根据数据分布的情况,决定非线性函数的曲线。
log函数:x = lg(x)/lg(max)
反正切函数:x = atan(x)*2/pi
定义数组:x = numpy.array(x)
获取二维数组列方向的最大值:x.max(axis = 0)
获取二维数组列方向的最小值:x.min(axis = 0)
对二维数组进行线性归一化:
def max_min_normalization(data_value, data_col_max_values, data_col_min_values):
""" Data normalization using max value and min value
Args:
data_value: The data to be normalized
data_col_max_values: The maximum value of data's columns
data_col_min_values: The minimum value of data's columns
"""
data_shape = data_value.shape
data_rows = data_shape[0]
data_cols = data_shape[1]
for i in xrange(0, data_rows, 1):
for j in xrange(0, data_cols, 1):
data_value[i][j] = \
(data_value[i][j] - data_col_min_values[j]) / \
(data_col_max_values[j] - data_col_min_values[j])
定义数组:x = numpy.array(x)
获取二维数组列方向的均值:x.mean(axis = 0)
获取二维数组列方向的标准差:x.std(axis = 0)
对二维数组进行标准差归一化:
def standard_deviation_normalization(data_value, data_col_means,
data_col_standard_deviation):
""" Data normalization using standard deviation
Args:
data_value: The data to be normalized
data_col_means: The means of data's columns
data_col_standard_deviation: The variance of data's columns
"""
data_shape = data_value.shape
data_rows = data_shape[0]
data_cols = data_shape[1]
for i in xrange(0, data_rows, 1):
for j in xrange(0, data_cols, 1):
data_value[i][j] = \
(data_value[i][j] - data_col_means[j]) / \
data_col_standard_deviation[j]
定义数组:x = numpy.array(x)
获取二维数组列方向的最大值:x.max(axis=0)
获取二维数组每个元素的lg值:numpy.log10(x)
获取二维数组列方向的最大值的lg值:numpy.log10(x.max(axis=0))
对二维数组使用lg进行非线性归一化:
def nonlinearity_normalization_lg(data_value_after_lg,
data_col_max_values_after_lg):
""" Data normalization using lg
Args:
data_value_after_lg: The data to be normalized
data_col_max_values_after_lg: The maximum value of data's columns
"""
data_shape = data_value_after_lg.shape
data_rows = data_shape[0]
data_cols = data_shape[1]
for i in xrange(0, data_rows, 1):
for j in xrange(0, data_cols, 1):
data_value_after_lg[i][j] = \
data_value_after_lg[i][j] / data_col_max_values_after_lg[j]
数据归一化问题是数据挖掘中特征向量表达时的重要问题,当不同的特征成列在一起的时候,由于特征本身表达方式的原因而导致在绝对数值上的小数据被大数据“吃掉”的情况,这个时候我们需要做的就是对抽取出来的features vector进行归一化处理,以保证每个特征被分类器平等对待。下面我描述几种常见的Normalization Method,并提供相应的python实现(其实很简单):
1、(0,1)标准化:
这是最简单也是最容易想到的方法,通过遍历feature vector里的每一个数据,将Max和Min的记录下来,并通过Max-Min作为基数(即Min=0,Max=1)进行数据的归一化处理:
LaTex:{x}_{normalization}=\frac{x-Min}{Max-Min}
Python实现:
2、Z-score标准化:
这种方法给予原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。经过处理的数据符合标准正态分布,即均值为0,标准差为1,这里的关键在于复合标准正态分布,个人认为在一定程度上改变了特征的分布,关于使用经验上欢迎讨论,我对这种标准化不是非常地熟悉,转化函数为:
LaTex:{x}_{normalization}=\frac{x-\mu }{\sigma }
Python实现:
3、Sigmoid函数
Sigmoid函数是一个具有S形曲线的函数,是良好的阈值函数,在(0, 0.5)处中心对称,在(0, 0.5)附近有比较大的斜率,而当数据趋向于正无穷和负无穷的时候,映射出来的值就会无限趋向于1和0,是个人非常喜欢的“归一化方法”,之所以打引号是因为我觉得Sigmoid函数在阈值分割上也有很不错的表现,根据公式的改变,就可以改变分割阈值,这里作为归一化方法,我们只考虑(0, 0.5)作为分割阈值的点的情况:
LaTex:{x}_{normalization}=\frac{1}{1+{e}^{-x}}
Python实现: